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Abstract—Graph machine learning has been extensively studied in both academia and industry. Although booming with a vast number
of emerging methods and techniques, most of the literature is built on the in-distribution hypothesis, i.e., testing and training graph data
are identically distributed. However, this in-distribution hypothesis can hardly be satisfied in many real-world graph scenarios where the
model performance substantially degrades when there exist distribution shifts between testing and training graph data. To solve this
critical problem, out-of-distribution (OOD) generalization on graphs, which goes beyond the in-distribution hypothesis, has made great
progress and attracted ever-increasing attention from the research community. In this paper, we comprehensively survey OOD
generalization on graphs and present a detailed review of recent advances in this area. First, we provide a formal problem definition of
OOD generalization on graphs. Second, we categorize existing methods into three classes from conceptually different perspectives,
i.e., data, model, and learning strategy, based on their positions in the graph machine learning pipeline, followed by detailed
discussions for each category. We also review the theories related to OOD generalization on graphs and introduce the commonly used
graph datasets for thorough evaluations. Finally, we share our insights on future research directions.

Index Terms—Graph Machine Learning, Graph Neural Network, Out-Of-Distribution Generalization.
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1 INTRODUCTION

G RAPH data is ubiquitous in our daily life. It has been
widely used to model the complex relationships and de-

pendencies between entities, ranging from microscopic particle
interactions in physical systems and molecular structures in pro-
teins to macroscopic traffic networks and global communication
networks. Machine learning approaches on graphs, especially for
graph neural networks (GNNs), have attracted wide attention and
been extensively studied in the last decade. They have shown
great successes in both academia and industry, illustrating their
excellent capabilities in a wide range of realistic applications,
e.g., social networks [1], recommendation systems [2], knowledge
representation [3], traffic forecasting [4], etc.

Despite the notable success of graph machine learning ap-
proaches, the existing literature generally relies on the assumption
that the testing and training graph data are drawn from the identical
distribution, i.e., the in-distribution (I.D.) hypothesis. However, in
the real world, such a hypothesis is difficult to be satisfied due
to the uncontrollable underlying data generation mechanism [5].
In practice, there will inevitably be scenarios with distribution
shifts between testing and training graphs [6]. These classic
graph machine learning approaches lack the ability of out-of-
distribution (OOD) generalization, which fail dramatically with
significant performance drop under distribution shifts. Therefore,
it is of paramount importance to develop approaches capable of
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out-of-distribution generalization on graphs, especially for high-
stake graph applications, e.g., molecule prediction [7], financial
analysis [8], criminal justice [9], autonomous driving [10], par-
ticle physics [11], as well as pandemic prediction [12], medical
detection [13] and drug repurposing [14] for COVID-19.

Out-of-distribution (OOD) generalization algorithm [15–17]
aims to achieve satisfactory generalization performance under
unknown distribution shifts. It has been occupying an important
position in the research community due to the increasing demand
for handling in-the-wild unseen data. Combining the strength of
graph machine learning and OOD generalization, i.e., OOD gen-
eralization on graphs, naturally serves as a promising research
direction to facilitate graph machine learning model deployments
in real-world scenarios. However, this problem is highly non-
trivial due to the following challenges.

• Uniqueness of graph data: The non-Euclidean nature of
graph-structured data space leads the unique graph model
designs and makes obstacles for the direct adoption of OOD
generalization algorithms that are mainly developed on Eu-
clidean data (e.g., images and texts).

• Diversity of graph task: The problems on graphs are highly
diverse, ranging from node-level, link-level to graph-level
tasks, along with distinct settings, objectives, and constraints.
It is necessary to integrate different levels of graph character-
izations into the graph OOD generalization methods.

• Complexity of graph distribution shift type: The distri-
bution shifts on graphs can exist on feature-level (e.g., node
features) and topology-level (e.g., graph size or other struc-
tural properties). Such complex types of graph distribution
shifts (as shown in Fig. 1) render more difficulties for OOD
generalization.

With both opportunities and challenges, it is the right time to
review and carry out the studies of graph OOD generalization
methods. In this paper, we provide a systematic and comprehen-
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Fig. 1: Complex types of distribution shifts on graphs. The dis-
tribution shifts can exist on graph sizes, node features, and graph
structural properties [6]. The OOD generalized graph approaches
are expected to perform well on the unseen testing data even under
distribution shifts rather than overfitting the training data.

sive review1 for OOD generalization on graphs for the first time,
to the best of our knowledge. Specifically, to cover the whole life
cycle of OOD generalization on graphs, we start by providing a
formal problem definition. We divide the existing methodologies
into three conceptually different categories based on their positions
in the graph machine learning pipeline, and elaborate typical
approaches for each category. We also review the theories and
datasets for evaluations to further promote the research on OOD
generalization on graphs. Last but not least, we share our insights
on potential research topics deserving future investigations.

Some related surveys review from the perspectives of graph
data augmentation [18, 19], graph self-supervised learning [20,
21], graph adversarial learning [22, 23], etc. However, they are
significantly different from ours. First, they do not focus on
the graph OOD generalization that is the center topic of this
survey. Then, a portion of their reviewed methods serves as an
important piece of the puzzle for the whole problem of graph
OOD generalization. To the best of our knowledge, there is no
comprehensive review for current advancements of graph OOD
generalization methods.

The rest of the paper is organized as follows. In Section 2,
we formulate the problem of OOD generalization on graphs
and present our categorization of existing literature. We com-
prehensively review three categories of methods in Sections 3–
5, followed by our review of related theory (in Section 6) and
evaluation datasets (in Section 7). Lastly, we point out future
research opportunities in Section 8.

2 PROBLEM DEFINITION AND CATEGORIZATION

In this section, we first describe the formulation of OOD general-
ization on graphs. Then we provide the categorization of existing
graph OOD generalization methods.

2.1 Problem Definition
Let G = (V,E) denote a graph, where V is the set of nodes
and E ⊆ V × V is the set of edges. X ∈ R|V |×F denotes node
feature matrix where F is the dimensionality of node feature. A
denotes the adjacency matrix reflecting the topological structure.
Therefore, the graph G can be composed of the node feature and
topological structure, i.e., G = (X,A).

1. The summary of graph OOD generalization methods reviewed in this
survey can be found at https://graph.ood-generalization.com.

Let G be the input graph space and Y be the label space. A
graph predictor fθ : G → Y with parameter θ maps the input
instance G ∈ G into the label Y ∈ Y. A loss function ℓ measures
the distance between prediction and ground-truth label. The graph
OOD generalization problem is defined as:

Definition 1 (Graph OOD generalization). Given the training set
of N instances (i.e., nodes, links, or graphs) D = {(Gi, Yi)}Ni=1
that are drawn from training distribution Ptrain(G, Y ), where
Gi ∈ G and Yi ∈ Y, the goal is to learn an optimal graph
predictor f∗

θ that can achieve the best generalization on the data
drawn from test distribution Ptest(G, Y ), where Ptest(G, Y ) ̸=
Ptrain(G, Y ):

f∗
θ = argmin

fθ
EG,Y ∼Ptest [ℓ(fθ(G), Y )]. (1)

The distribution shifts between Ptest(G, Y ) and
Ptrain(G, Y ) can lead to the failure of graph predictor built on
the in-distribution (I.D.) hypothesis, since directly minimizing the
average loss on training instances EG,Y∼Ptrain

[ℓ(fθ(G), Y )] can
not obtain an optimal predictor that generalizes to testing instances
under distribution shifts. Note that the testing distribution is
unknown during the training stage. Compared to traditional
domain generalization problems [86], graph OOD generalization
is inherently more complex, as it requires addressing potential
multi-level distribution shifts, including those at the feature level
(e.g., node features X) and topology level (e.g., graph size,
structural patterns A). These shifts may occur independently
or simultaneously, posing significant challenges to learning an
optimal graph predictor f∗

θ that can generalize effectively within
and even across diverse tasks, such as node-level, link-level, and
graph-level predictions.

2.2 Categorization

To tackle the challenges brought by unknown distribution shifts
and solve the graph OOD generalization problem, considerable
efforts have been made in literature, which can be categorized into
three classes:

• Data: This category of methods aims to manipulate the
input graph data, i.e., graph augmentation. They are typically
motivated by the view that OOD generalization failure is
often induced by limited diversity or coverage in the training
data. By systematically generating more training samples to
increase the quantity and diversity of the training set while
generally keeping the model backbone unchanged, graph
augmentation techniques are effective in improving the OOD
generalization performance.

• Model: This category of methods aims to propose new
graph models for learning OOD generalized graph repre-
sentations, including two types of representative methods:
disentanglement-based graph models and causality-based
graph models. They aim to improve OOD generalization
directly into the design of graph neural networks with specific
prior knowledge or causal assumptions. They are designed
to separate causal from spurious factors through structural
inductive biases, typically operating at the level of graph
representations output by the graph model. Their contribu-
tions or claims are mainly in the new model architectural
design for handling distribution shifts, although in principle
these methods could potentially be combined with graph
augmentations or customized training objectives.

https://graph.ood-generalization.com
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Graph OOD
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methods

Data (Sec. 3)

Structure-wise Graph
Data Augmentation

GAug [24]; MH-Aug [25];
KDGA [26].

Feature-wise Graph
Data Augmentation

GRAND [27]; FLAG [28];
LA-GNN [29].

Mixed-type Graph
Data Augmentation

GraphCL [30]; GREA [31]; LiSA [32];
AIA [33]; MARIO [34]; Mixup [35].

Model (Sec. 4)

Disentanglement-based
Graph Models

DisenGCN [36]; IPGDN [37]; FactorGCN [38]; DisC [39];
NED-VAE [40]; DGCL [41]; IDGCL [42]; OOD-GCL [43].

Causality-based
Graph Models

OOD-GNN [6]; StableGNN [44]; DGNN [45]; CAL [46]; DSE [47]; CIGA [48]; EQuAD [49];
CSIB [50]; G-Splice [51]; CaNet [52]; E-invariant GR [53]; gMPNN•• [54] ; CFLP [55]; Gem [56].

Learning
Strategy (Sec. 5)

Graph Invariant
Learning

GIL [57]; C2R [58]; DIR [59]; GSAT [60]; UIL [61]; VIVACE [62]; EERM [63]; INL [64]; FLOOD [65];
GraphMETRO [66]; DIDA [67]; SILD [68]; EAGLE [69]; SR-GNN [70]; SizeShiftReg [71]; StableGL [72].

Graph Adversarial
Training

DAGNN [73]; GNN-DRO [74]; GraphAT [75];
CAP [76]; WT-AWP [77]; OAD [78].

Graph Self-supervised
Learning

Pretraining-GNN [79]; PATTERN [80]; DR-GST [81]; GraphCL [30];
RGCL [82]; GAPGC [83]; GT3 [84]; HomoTTT [85].

Fig. 2: Taxonomy of graph OOD generalization methods. We categorize existing methodologies into three conceptually different
branches based on their positions in the graph machine learning pipeline, i.e., data, model and learning strategy.

TABLE 1: Conceptual relations and distinctions between the three categories of graph OOD generalization methods.

Aspect Data Model Learning Strategy
Goal Increase data diversity and quality Encode prior knowledge or causal

assumptions into model design
Enhance generalization via tailored
training objectives and strategies

Targeted
Component Input graph structure or feature Model architecture design or

representations
Training procedures, loss functions
or optimization schemes

Predominant Phase
of Application Primarily during data preparation

stage
Typically during model design and
representation learning

Mainly during optimization or
training

GNN Backbone Typically keep GNN backbone
unchanged

Generally have specific GNN
backbone design

Generally are compatible with
different GNN backbones

Theoretical
Foundation Graph data augmentation Representation disentanglement,

causal modeling
Invariant learning, adversarial
training, self-supervised learning

Typical Tools Graph perturbation, mixup,
graphon interpolation

Disentangled encoders,
do-calculus, sample reweighting

Invariance loss, contrastive loss,
adversarial training

• Learning Strategy: This category of methods focuses on
exploiting the training schemes with tailored optimization
objectives and constraints to enhance the OOD general-
ization capability, including graph invariant learning, graph
adversarial training, and graph self-supervised learning. They
typically retain the original data and generally do not rely
on specific new model architectures but instead are often
compatible with various GNN backbones to enhance OOD
generalization through guiding the learning process.

These methods solve the graph OOD generalization problem from
three conceptually different perspectives. We provide the taxon-
omy in Figure 2 and elaborate on these methods for each category
in the following sections. Drawing inspiration from the existing
surveys [15, 86–88] and also carefully considering the unique
characteristics of graph OOD generalization methods, our cate-
gorization reflects the primary mechanism of action emphasized
by each method, i.e., its core motivation or central design focus
as described in the original work, and the component of the graph
learning pipeline it primarily contributes, although some hybrid
methods inevitably exist between categories. The key conceptual
differences among these three categories are also summarized in
Table 1 for better clarification, which highlights their goals, main
point of modification, and underlying theoretical motivations. We
summarize the characteristics of these methods in Table 2.

3 DATA

The OOD generalization ability of machine learning models,
including graph models, heavily relies on the diversity and quality
of training data [16]. In general, the more diverse and high-quality
the training data, the better the generalization performance of

graph models. With proper graph augmentation technique, this
type of methods can obtain more graph instances with a simple
way for training, whose goal can be formulated as:

min
fθ

EX′,Y ′ [ℓ(fθ(X
′), Y ′)], (2)

where (X ′, Y ′) belongs to training set D′ augmented from D. In
general, the graph augmentation literature can be summarized into
three types of strategies, including structure-wise augmentations,
feature-wise augmentations, and mixed-type augmentations.

3.1 Structure-wise Graph Data Augmentation
Since the graph structure (i.e., topology) plays an important role in
predicting the properties of graphs, some works focus on structure-
wise augmentations for the input graphs to generate more diverse
training topologies that potentially cover some unobserved testing
topologies, leading to better OOD generalization ability. Here
we mainly review the representative graph data augmentation
approaches that claim to or have practically been verified to
improve the OOD generalization in the paper, the same below.
Please refer to the graph augmentation surveys [18, 19] for more
details of other methods.

GAug (Graph Augmentation) [24] proposes to generate aug-
mented graphs via a differentiable edge predictor for improving
the generalization. It finds that the edge predictors can effectively
encode class-homophilic structure to promote intra-class edges
and demote inter-class edges in the given graph structure. Such
edge manipulation can not only benefit the prediction accuracy
but the generalization ability of the graph models. GAUG uses an
edge prediction module to modify the given input graph for the
downstream training and inference processes. It can also learn to
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generate possible new edges for the input graph. The performance
of node-level classification tasks can be improved without any
modification at inference time. Based on both denoised structure
and mimic variability, it boosts the generalization capability.

MH-Aug (Metropolis-Hastings Data Augmentation) [25] fur-
ther proposes graph augmentation from a perspective of a Markov
chain Monte Carlo sampling [89] to flexibly control the strength
and diversity of augmentation. A sequence of augmented samples
are drawn from the explicitly designed target distribution that
controls the augmentation. For tackling the infeasibility of direct
sampling from the complex distribution, it adopts the Metropolis-
Hastings algorithm to obtain the augmented samples. Instead of
random graph augmentations, this method is more controllable,
including an efficient strategy to measure and control the augmen-
tation strength reflecting the structural changes of ego-graphs (or
samples in node classification). Finally, the OOD generalization
power is increased by the diverse augmented training samples.

KDGA (Knowledge Distillation for Graph Augmenta-
tion) [26] identifies the negative augmentation problem of the
graph augmentation methods above, namely these methods could
cause overly severe distribution shifts between the augmented
graphs for training and the graph for testing, leading to suboptimal
generalization. KDGA is a graph structure augmentation method
proposed based on the knowledge distillation technique to reduce
the potential negative effects of distribution shifts. Specifically, it
extracts the knowledge from the GNN teacher model trained on the
augmented graph data and leverages such knowledge in a partially
parameter-shared student model that is tested on the given input
graph. The experiments on both homophily and heterophily graph
datasets show the effectiveness in node-level tasks.

3.2 Feature-wise Graph Data Augmentation

Besides structure-wise augmentations introduced above that re-
move or add edges for the input graph, some techniques on
manipulating node features are also developed recently, showing
effectiveness in enhancing the OOD generalization.

GRAND (Graph Random Neural Network) [27] is one simple
yet effective feature-wise augmentation method for improving the
generalization. It first randomly drops on node features either par-
tially or entirely and then propagates the perturbed node features
over the input graph. Therefore, each node of the input graph
can eliminate the excessive sensitivity to specific neighborhoods
that could induce poor OOD generalization. Under the homophily
assumption [90], it stochastically creates different augmented
representations for each node. The consistency loss minimizes the
distance of the representations learned from the augmented graphs.

FLAG (Free Large-scale Adversarial Augmentation on
Graphs) [28] is another simple, scalable, and general graph data
augmentation method for better generalization. It proposes to
iteratively augment node features in input node feature space with
gradient-based adversarial perturbations during training, while
keeping graph structures unchanged. It leverages the free adver-
sarial training method [91] to craft adversarial data augmentations.
Due to its simple and scalable design, this method can conduct
efficient training on some large-scale datasets and also can be
easily incorporated into the training pipeline of common GNN
backbones. Different from GRAND that is only designed for tasks
on nodes, FLAG can be utilized into node/link/graph level tasks.

LA-GNN (Local Augmentation for GNN) [29] proposes a
local augmentation for GNNs to learn the distribution of the node

features of the neighbors conditioned on the center node’s feature.
Specifically, it first exploits a generative model to conduct the pre-
training for learning the conditional distribution of the neighbors’
node features of the center node’s feature. Then, the learned
distribution can be used to generate feature vectors associated with
the center node as additional input for each training iteration. Since
the pre-training of the generative model and downstream GNN
training are decoupled, this data augmentation method is also
model-agnostic, which can be applied to most GNN backbones in
a plug-and-play manner. The feature vectors of new nodes can be
directly generated via the generative model, so that it can enhance
the generalization of the unseen testing nodes. The main difference
between LA-GNN with some feature-wise graph augmentations
above is that it pays more attention to the local information of the
node neighbors rather than only focusing on global augmentation
concerning the properties of the whole distribution of the graph.

3.3 Mixed-type Graph Data Augmentation

Moreover, for combining the advantages of structure-wise and
feature-wise graph augmentation methods, some works do not
conduct single type of augmentation on graph topology or node
feature, but in the mixed-type paradigm, which are increasingly
popular in the community for improving OOD generalization.

GraphCL (Graph Contrastive Learning) [30] first proposes
four general data augmentations for graph-structured data, in-
cluding node dropping, edge perturbation, attribute masking, and
subgraph sampling. Specifically, node dropping is to randomly
remove nodes as well as the links to neighbors. And the edge
perturbation is to randomly add or remove a fraction of edges.
Attribute masking is to mask off certain node attributes by setting
the attributes to Gaussian noises. Subgraph sampling is to sample
a subgraph using random walk, which includes a fraction of nodes
from the input graph. After obtaining the augmented samples of
the input, it makes the graph encoder maximize representation
consistency under augmentations and has shown good OOD gen-
eralization ability in graph classification [92].

GREA (Graph Rationalization Enhanced by Environment-
based Augmentations) [31] proposes a data augmentation strat-
egy based on environment replacement to improve the rationale
identification accuracy of the input graphs for OOD general-
ization. The graph rationale is defined as a part of each input
graph, i.e., the representative subgraph, that best supports the
prediction and can be OOD generalizable. The authors argue
that existing augmentation methods (e.g., GraphCL) are mainly
heuristic modification to the input graphs, which could not directly
support the identification of graph rationales. They generate an
augmented example by replacing the environment subgraph of
the input graph with the environment subgraph of another graph
and encourage the augmented examples to have the same label
of the input graph. Considering the high complexity of explicit
subgraph decoding and encoding, it turns to implicitly conduct
rationale-environment separation and representation learning for
the original and augmented graphs in latent space. Based on the
accurately identified rationale of the input graph, they verify that
the OOD generalization ability is improved.

LiSA (Label-invariant Subgraphs to Construct Augmented En-
vironments) [32] is one inspiring and effective method to generate
several augmented domains based on label-invariant subgraphs
extracted from the source domain for OOD generalization. It is a
promising graph data augmentation method designed specifically
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for achieving graph OOD generalization. Since distribution shifts
arise from domain disparities, LiSA ensures the graph predictor
performs consistently across domains. To address the challenge
of collecting sufficient domains, LiSA generates augmented do-
mains by using variational subgraph generators to output diverse
subgraphs while maintaining critical predictive information. An
energy-based regularization promotes diversity by enlarging the
distances between distributions of different augmented domains,
while an information constraint ensures subgraphs retain label-
relevant information. These augmented domains preserve con-
sistent predictive relationships, enabling the graph predictor to
generalize effectively on OOD testing graphs in unseen domains.

AIA (Adversarial Invariant Augmentation) [33] proposes a
graph augmentation technique to alleviate the covariate shift
problem that is one specific scenario in graph OOD generalization.
The authors claim that existing graph augmentation strategies
suffer from limited environments or unstable causal features,
restricting their OOD generalization ability under covariate shift
data. To tackle this problem, AIA first proposes two principles
for graph augmentation, which are environmental diversity and
causal invariance. The environmental diversity principle encour-
ages the graph augmentation to extrapolate unseen environments
(or domains). And the causal invariance principle reduces the
distribution gap between the augmented graph data and unseen
testing graph data. The method consists of two main modules,
including adversarial augmenter to adversarially learn the masks
on both graph topology and node features for enhancing environ-
mental diversity, causal generator to output the masks that capture
causal information. Based on the two principles and corresponding
designs, AIA can get rid of vulnerability under covariate shift.

MARIO (Model-Agnostic Recipe for Improving OOD Gener-
alization) [34] enforces representation consistency across diverse
augmented views via graph augmentation, and incorporates con-
ditional mutual information regularization to suppress redundant
information while preserving task-relevant features. By jointly
addressing augmentation-induced variability and representation
redundancy, MARIO effectively mitigates overfitting to spurious
correlations and achieves OOD generalization on both node- and
graph-level classification tasks.

Besides, in parallel with the development of graph neural
networks, Mixup and its variants [35, 93], as general data aug-
mentation methods that generate new instances based on the
interpolation of the given instances, have been theoretically and
empirically shown to improve generalization ability in the fields
of computer vision [94] and natural language processing [95].
The similar strategies are also applied in graphs [96–101]. For
example, GraphMix [96] adopts manifold mixup [93] on node
classification tasks by jointly training a fully-connected network
(FCN) and a GNN. The loss of FCN is computed using manifold
mixup while the loss of GNN is computed normally. A parameter
sharing strategy is utilized between the FCN and GNN to help the
transfer of critical node representations from the FCN to the GNN.
G-Mixup [97] interpolates the node features and graph structure
in the embedding space as data augmentation, i.e., interpolating
the hidden representations of graphs. NodeAug [100] analogizes
Mixup with a two-branch graph convolution module. It mixes the
raw features of a pair of nodes, and feeds them into the two-branch
GNN layer, followed by mixing their hidden representations of
each layer. ifMixup (intrusion-free Mixup) [99] applies Mixup not
for the latent representations but directly on the graph data. Due to
the issue that graph data are irregular and the nodes of two graphs

are not aligned, ifMixup assigns indices to the nodes arbitrarily
and matches the nodes with the indices. G-Mixup [101] tackles
the key challenges when mixing up directly on the graph data, as
graph data is irregular and not well-aligned, and graph topology
between classes is divergent. Specifically, it first adopts graphs
within the same class to estimate a graphon. After that, it does not
manipulate graphs directly, but interpolates graphons of different
classes in the Euclidean space to obtain the mixed graphons, where
the synthetic graphs are produced via sampling based upon the
mixed graphons. This method performs well in graph classification
datasets with distribution shifts, reflecting its promising OOD
generalization. OOD-GMixup [102] addresses hybrid structure
distribution shifts through controllable data augmentation. It first
extracts task-relevant graph rationales to eliminate spurious corre-
lations. Then, it generates virtual samples via manifold mixup and
calibrates them using Extreme Value Theory to reweight training,
improving OOD generalization. Since these methods share similar
ideas, we use the notation “Mixup” to denote these Mixup-based
methods that are introduced above in Figure 2 and Table 2.

4 MODEL

Besides augmenting the input graph data to assist achieving good
OOD generalization, there are branches of works that specially
design new graph models, i.e., fθ in Eq. (1). By introducing some
prior knowledge to model design, the graph model is endowed
with the ability to produce graph representation with the properties
that could help to improve OOD generalization. Along this branch,
there are two kinds of popular techniques: disentanglement-based
graph models and causality-based graph models.

Distinction between Disentanglement-based and Causality-
based Methods. While both aim to extract stable, task-relevant
information while reducing the influence of spurious patterns,
they are built upon fundamentally different theoretical principles
and modeling strategies. Our categorization is based on their
core mechanisms for achieving OOD generalization either through
statistical or causal assumptions. Disentanglement-based meth-
ods originate from representation learning and aim to decompose
latent representations into statistically independent components,
each corresponding to a distinct latent factor. These methods
emphasize modular and interpretable representations, often im-
plemented via multi-channel encoders or routing-based mecha-
nisms [36]. Notably, they do not require extra prior knowledge
of the data-generating process or assumptions about causality.
Causality-based methods, by contrast, are motivated by princi-
ples from causal inference. They assume that the observed graph
data is generated from the underlying causal assumptions (e.g.,
structural causal model), and seek to learn representations that are
stable across different interventions. Techniques in this category
often include confounder balancing, backdoor/frontdoor adjust-
ment, and counterfactual reasoning. Although both approaches
aim to improve OOD generalization, they differ in the type of
information they seek to capture: disentanglement-based methods
focus on identifying statistically independent factors in the data,
while causality-based methods aim to model the underlying causal
mechanisms that govern the data.

4.1 Disentanglement-based Graph Models

In this section, we introduce the graph models based on disentan-
glement for OOD generalization.
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TABLE 2: A summary of graph OOD generalization methods. “Task” denotes the task type that each method focuses on, including
node/link/graph level tasks. “Shift Type” denotes the type of distribution shifts that each method can handle, including topology-level
(i.e., graph size and graph structure) and feature-level (i.e., node features) distribution shifts. “Backbone agnostic” indicates whether
the method can be used for other GNN backbones. “|E| > 1” indicates whether the method relies on multiple environments during the
training process.

Category Subcategory Method Task Shift Type Backbone |E| > 1Node Link Graph Size Structure Feature Agnostic

Data

Structure-wise
Graph Data

Augmentation

GAug [24] ✓ ✓ ✓
MH-Aug [25] ✓ ✓ ✓
KDGA [26] ✓ ✓ ✓

Feature-wise
Graph Data

Augmentation

GRAND [27] ✓ ✓ ✓
FLAG [28] ✓ ✓ ✓ ✓ ✓
LA-GNN [29] ✓ ✓ ✓

Mixed-type
Graph Data

Augmentation

GraphCL [30] ✓ ✓ ✓ ✓ ✓
GREA [31] ✓ ✓ ✓ ✓
LiSA [32] ✓ ✓ ✓ ✓ ✓
AIA [33] ✓ ✓ ✓ ✓
MARIO [34] ✓ ✓ ✓ ✓ ✓
Mixup [35] ✓ ✓ ✓ ✓ ✓

Model

Disentanglement-
based

Graph Models

DisenGCN [36] ✓ ✓ ✓
IPGDN [37] ✓ ✓ ✓
FactorGCN [38] ✓ ✓ ✓
DisC [39] ✓ ✓ ✓ ✓
NED-VAE [40] ✓ ✓ ✓
DGCL [41] ✓ ✓ ✓ ✓
IDGCL [42] ✓ ✓ ✓ ✓
OOD-GCL [43] ✓ ✓ ✓ ✓

Causality-
based

Graph Models

OOD-GNN [6] ✓ ✓ ✓ ✓ ✓
StableGNN [44] ✓ ✓ ✓ ✓
DGNN [45] ✓ ✓ ✓ ✓
CAL [46] ✓ ✓ ✓ ✓
DSE [47] ✓ ✓ ✓
CIGA [48] ✓ ✓ ✓ ✓ ✓
EQuAD [49] ✓ ✓ ✓ ✓ ✓
CSIB [50] ✓ ✓ ✓ ✓ ✓
G-Splice [51] ✓ ✓ ✓ ✓ ✓
CaNet [52] ✓ ✓ ✓ ✓
E-invariant GR [53] ✓ ✓ ✓ ✓
gMPNN•• [54] ✓ ✓ ✓
CFLP [55] ✓ ✓ ✓
Gem [56] ✓ ✓ ✓ ✓

Learning
Strategy

Graph
Invariant
Learning

GIL [57] ✓ ✓ ✓ ✓ ✓
C2R [58] ✓ ✓ ✓ ✓ ✓
DIR [59] ✓ ✓ ✓ ✓ ✓
GSAT [60] ✓ ✓ ✓ ✓
VIVACE [62] ✓ ✓ ✓ ✓
UIL [61] ✓ ✓ ✓ ✓ ✓
EERM [63] ✓ ✓ ✓ ✓ ✓
INL [64] ✓ ✓ ✓ ✓ ✓
FLOOD [65] ✓ ✓ ✓ ✓ ✓
GraphMETRO [66] ✓ ✓ ✓ ✓ ✓ ✓
DIDA [67] ✓ ✓ ✓ ✓ ✓
SILD [68] ✓ ✓ ✓ ✓ ✓
EAGLE [69] ✓ ✓ ✓ ✓ ✓
SR-GNN [70] ✓ ✓ ✓ ✓ ✓
SizeShiftReg [71] ✓ ✓ ✓
StableGL [72] ✓ ✓ ✓ ✓

Graph
Adversarial

Training

DAGNN [73] ✓ ✓ ✓ ✓
GNN-DRO [74] ✓ ✓ ✓ ✓
GraphAT [75] ✓ ✓ ✓ ✓
CAP [76] ✓ ✓ ✓ ✓
WT-AWP [77] ✓ ✓ ✓ ✓ ✓
OAD [78] ✓ ✓ ✓ ✓

Graph
Self-supervised

Learning

Pretraining-GNN [79] ✓ ✓ ✓ ✓
PATTERN [80] ✓ ✓ ✓
DR-GST [81] ✓ ✓ ✓ ✓
GraphCL [30] ✓ ✓ ✓ ✓ ✓
RGCL [82] ✓ ✓ ✓ ✓
GAPGC [83] ✓ ✓ ✓ ✓
GT3 [84] ✓ ✓ ✓ ✓
HomoTTT [85] ✓ ✓ ✓ ✓

The formation of a real-world graph typically follows a com-
plex and heterogeneous process driven by the interaction of many
latent factors. Disentangled graph representation learning aims to
learn representations that separate these distinct and informative
factors behind the graph data and characterize these factors in
different parts of the factorized vector representations [36]. Such
representations have been shown to enhance OOD generaliza-
tion [103, 104]. The existing methods fall into three groups,
i.e., supervised disentanglement methods [36–39], unsupervised
generative disentanglement methods [40], and self-supervised con-
trastive disentanglement methods [41, 42].

DisenGCN [36] is the first method to learn disentangled node
representations, whose key ingredient is a disentangled multichan-
nel convolutional layer DisenConv. Executing inside DisenConv,
the proposed neighborhood routing mechanism is to identify the
factor that may cause the link from a center node to one of
its neighbors, and accordingly send the neighbor to the channel
responsible for that factor. It infers the latent factors by iteratively
analyzing the potential subspace clusters formed by the node
and its neighbors, after projecting them into several subspaces.
The authors prove that after a sufficient number of iterations,
the proposed neighborhood routing mechanism can converge.
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Therefore, each channel of DisenConv can extract features specific
to only one disentangled latent factor from the neighbor nodes,
and perform a convolution operation independently. By stacking
multiple DisenConv layers, DisenGCN is able to extract infor-
mation beyond the local neighborhood and produce disentangled
representations. Since the latent factors of nodes are disentangled,
it could lead to better OOD generalization performance.

IPGDN (Independence Promoted Graph Disentangled Net-
work) [37] extends DisenGCN [36] by explicitly encouraging
the latent factors to be as independent as possible in addition
to the neighborhood routing mechanism for disentangling latent
factors behind graphs. It minimizes the dependence among differ-
ent representations with a kernel-based measure Hilbert-Schmidt
Independence Criterion (HSIC) [105]. Specifically, to disentangle
the target node, the convolution layer of IPGDN first constructs
features from different aspects of its neighbors via disentangled
representation learning, and then encourages the independence
among latent representations through minimizing HSIC to obtain
the final results. Note that the disentangled representation learn-
ing and independence regularization are jointly optimized in a
unified framework, leading to more disentangled representations
when compared with DisenGCN. And both DisenGCN [36] and
IPGDN [37] are proposed for handling node-level tasks on graphs.

FactorGCN (Factorizable GCN) [38] is a disentangled GNN
model for graph-level representation learning. It adopts a fac-
torizing mechanism by decomposing input graphs into several
interpretable factor graphs for graph-level disentangled represen-
tations. Each of the factor graphs is separately sent to a GCN,
tailored to aggregate features in terms of only one disentangled
latent factor, followed by an aggregating operation that concate-
nates together all derived features of disentangled latent factors.
The final produced graph-level representations present block-wise
interpretable features, and each of the factorized representations
corresponds to a disentangled and interpretable relation space.
These steps constitute one layer of FactorGCN, so that FactorGCN
can produce a hierarchical disentanglement with various numbers
of factor graphs at different levels by stacking a number of layers
to disentangle the input data at different levels.

Compared with the methods disentangling latent factors, DisC
(Disentangled Causal Substructure) [39] is a disentangled GNN
model directly disentangling causal and noncausal information
of the input graph. By explicitly disentangling the input graph
into causal and bias subgraphs, this method can only utilize the
causal substructures to make stable predictions when severe bias
appears under distribution shifts. Specifically, it first filters edges
into causal and bias (i.e., noncausal) subgraphs by a parameterized
edge mask generator, whose parameters are shared across entire
datasets. The edge masker is expected to indicate the importance
for each edge and extract causal and bias subgraphs. Then, the
causal and bias subgraphs are fed to two GNNs trained with
causal-aware weighted cross-entropy loss and bias-aware gen-
eralized cross-entropy loss respectively, leading to disentangled
representations. Next, it further permutes the latent representations
extracted from different graphs to generate more training samples.
Although containing both causal and bias information, the causal
and bias subgraph of newly generated samples are decorrelated.
Finally, the proposed model could focus on the true correlation
between the disentangled causal subgraphs and labels for achiev-
ing OOD generalized prediction.

Besides the supervised methods above, there exist some unsu-
pervised disentangled methods.

NED-VAE (Node-Edge Disentangled Variational Auto-
encoder) [40] is a deep unsupervised generative approach for
disentanglement learning on graphs, which can automatically
capture the independent latent factors in both edges and nodes
from attributed graphs. The objective is designed for node-edge
joint disentanglement by optimizing three sub-encoders (i.e., a
node encoder, an edge encoder, and a node-edge co-encoder) that
learn the three types of representations, and two sub-decoders (i.e.,
a node-decoder and an edge decoder) that co-generate both nodes
and edges to model the complicated relationships between nodes
and edges. The base NED-VAE can also be extended to realize
the group-wise and variable-wise disentanglement to support more
fine-grained disentanglement.

Since reconstruction in unsupervised generative methods could
be computationally expensive and even introduce bias that has
a negative effect on the learned representations, DGCL (Disen-
tangled Graph Contrastive Learning) [41] first proposes to learn
disentangled graph representations with self-supervision. Specifi-
cally, it first identifies the latent factors behind the input graph and
derives its factorized representations by the tailored disentangled
graph encoder whose key ingredient is a multi-channel message-
passing layer. Each of the factorized representations describes a
latent and disentangled aspect pertinent to a specific latent factor
of the graph. Then it conducts factor-wise contrastive learning
in each representation subspace characterized by each factor
independently instead of in the whole representation space. This
tailored design can encourage that each disentangled factor of
the factorized representations is sufficiently discriminative only
under one specific aspect of the whole graph, so as to help the
graph encoder produce disentangled graph representations that
independently reflect the expressive information of latent factors.
Unlike generative models, contrastive learning is an instance-
wise discriminative approach that makes similar instances closer
and dissimilar instances far from each other in representation
space [106, 107], so it can eliminate computationally expensive
graph reconstruction and learn informative graph representations.

To further promote the disentanglement of the learned graph
representations, IDGCL (Independence Promoted Disentangled
Graph Contrastive Learning) [42] further extends DGCL by
explicitly employing HSIC [105] to eliminate the dependence
among disentangled representations that reflect different aspects of
graphs pertinent to different latent factors. Since the disentangled
graph representations are expected to capture mutually exclusive
information in terms of the latent factors, IDGCL formulates
the statistical independence among different latent representations
effectively. The factor-wise contrastive representation learning and
independence regularization are jointly optimized in a unified
framework so that the disentangled graph encoder can produce
better disentangled graph representations. Compared with the
existing methods, IDGCL encodes a graph with multiple disen-
tangled representations in a self-supervised manner, making it
possible to explore the meaning of each channel, which benefits in
more explainability and OOD generalization for producing graph
representations.

OOD-GCL (OOD Generalized Disentangled Graph Con-
trastive Learning) [43] further introduces a theoretically-
guaranteed disentangled graph contrastive learning model to ad-
dress OOD generalization challenges. By employing a disentan-
gled graph encoder and tailored invariant self-supervised learning,
it can capture invariant latent factors, ensuring generalized graph
representations under distribution shifts. Theoretical analyses con-
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firm its ability to provably learn disentangled graph representations
and achieve OOD generalization based on the learned disentangled
graph representations.

4.2 Causality-based Graph Models

In this section, we introduce the graph models based on causality
for OOD generalization.

Causal inference is one important technique to achieve OOD
generalization. Graph machine learning models tend to exploit
subtle statistical correlation existing in the training set even though
it is a spurious correlation (unexpected “shortcut”) for predictions
to boost training accuracy. The performance of graph models
that heavily rely on the spurious correlations can be substan-
tially degraded since the spurious correlations could change in
the wild OOD testing environments. In contrast, the causality-
based graph models supported by causal inference theory can
inherently capture causal relations between input graph data and
labels that are stable under distribution shifts [108], leading to
good OOD generalization. The existing methods can be divided
according to their theoretical ground including confounder balanc-
ing [6, 44, 45], predefined structural causal model [46, 47, 53, 54],
and counterfactual inference [55] and Granger causality [56].

4.2.1 Confounder Balancing based Methods
Some methods [6, 44, 45] introduce confounder balancing into
graph models.

OOD-GNN [6], backed by confounder balancing theory [109]
in causality, first tackles the OOD generalization problem by a
non-linear decorrelation operation on graphs. Specifically, OOD-
GNN proposes to eliminate the statistical dependence between
causal and noncausal graph representations of the graph encoder
by a nonlinear graph representation decorrelation method utilizing
random Fourier features [110], which scales linearly with the sam-
ple size and can get rid of spurious correlations. The parameters
of the graph encoder and sample weights for graph representation
decorrelation are optimized iteratively to learn discriminant graph
representations for predictions. The decorrelation operation actu-
ally has the same effect with confounder balancing that encourages
the independence between treatment and confounder. The graph
encoder trained on the weighted dataset can estimate the causal
effect of the variables in graph representations to the labels more
accurately, while getting rid of the spurious correlations. In this
way, OOD-GNN achieves the satisfactory performance on several
graph benchmarks with various types of distribution shifts (i.e.,
shifts on graph sizes, node features, and graph structures), indicat-
ing its strong OOD generalization ability in the wild environments.

StableGNN [44] proposes to exploit a differentiable graph
pooling layer to extract subgraph-based decorrelated representa-
tions based on sample reweighting, which is similar in princi-
ple to OOD-GNN. First, the graph high-level variable learning
component employs a graph pooling layer [111, 112] to map
nearby low-level nodes to a set of clusters, where each cluster is
expected to be one densely-connected subgraph unit of original
graph. Then, it generates the cluster-level embeddings through
aggregating the node embeddings in the same cluster, and aligns
the cluster semantic space across graphs through an ordered
concatenation operation. The cluster-level embeddings act as the
high-level variables for graphs. Next, the sample weights are
optimized to eliminate the statistical dependences between these
high-level variables. Thus, the graph encoder can concentrate more

on the true connection between discriminative substructures and
labels, leading to good OOD generalization ability.

In addition to the graph-level decorrelation models above,
DGNN (Debiased GNN) [45] is a node-level decorrelation model
with a similar methodology with StableGNN [44] that removes the
spurious correlations on nodes to achieve stable predictions under
distribution shifts. Specifically, it proposes a framework for OOD
generalized node representation learning by jointly optimizing
a decorrelation regularizer and a weighted GNN model. The
decorrelation regularizer is expected to learn a set of sample
weights for eliminating the spurious correlation between causal
and noncausal node information for OOD generalization. And
the learned sample weights via the decorrelation regularizer are
used to reweight the prediction loss of GNN model so that the
prediction could be OOD generalized.

4.2.2 Structural Causal Model based Methods
Some methods [46–48, 53, 54] take the structural causal model
(SCM) into account in their model designs. In general, the SCM
describes the underlying causal mechanisms. It can improve OOD
generalization when introducing appropriate causal mechanisms
into model designs.

CAL (Causal Attention Learning) [46] takes a causal look
at the GNN model and constructs a structural causal model via
presenting the causality among five variables: graph data, causal
feature, shortcut feature, graph representation, and prediction.
Based on this SCM, they focus on the backdoor path between
causal feature C and prediction, wherein the shortcut feature S
plays a confounder role. This backdoor path could form spurious
correlation, namely using the shortcut feature instead of using
causal feature to make predictions, leading to poor OOD gener-
alization under distribution shifts. Therefore, this method exploits
the do-calculus on the causal feature to cutting off the backdoor
path (i.e., backdoor adjustment [113]), and gets rid of the con-
founding effect. Finally, it can learn the true relationships between
the causal feature and prediction, without being influenced by the
unstable shortcut features, which enhances OOD generalization on
graph classification tasks.

DSE (Deconfounded Subgraph Evaluation) [47] proposes to
faithfully measure the causal effect of explanatory subgraphs
on the prediction. The authors claim that distribution shift is
hardly measurable, so that it is hard to block the backdoor path
from causal subgraph to label by the backdoor adjustment given
the predefined SCM. So, they utilize front-door adjustment and
introduce a surrogate variable of the causal subgraphs. Instead of
adopting the feature removal principle that is used in assessing the
explanatory subgraph, it designs a generative model, termed con-
ditional variational graph auto-encoder, to generate the possible
surrogates that conform to the data distribution. Therefore, it can
conduct unbiased estimation of the relation between causal sub-
graph and label. Since evaluating the explanatory causal subgraphs
unbiasedly, it mitigates the out-of-distribution effect and achieves
good OOD generalization.

CIGA (Causality Inspired Invariant Graph Learning) [48]
further categorizes the latent interaction between causal part C and
noncausal part S into fully informative invariant features (FIIF)
and partially informative invariant features (PIIF), depending on
whether the latent causal part C is fully informative about label
Y , i.e.,(S,E) ⊥⊥ Y |C . For FIIF assumption, the noncausal part
S is directly controlled by the causal part C . And for PIIF, the
noncausal part S is indirectly controlled by the causal part C
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through the label Y . The two SCMs exhibit different behaviors in
the observed distribution shifts. If one of FIIF or PIIF is excluded,
the performances of graph OOD generalization can degrade dra-
matically. Similarly, CIGA instantiates the causal part C as the
critical subgraph that includes the information about the underly-
ing causes of the label. So the OOD generalization can be achieved
by identifying this critical subgraph that maximally preserves
the intra-class information among different training environments,
hence the predictions will be stable to distribution shifts. EQuAD
(Encoding-Quantifying Decorrelation) [49] improves upon CIGA
by identifying spurious and causal features through a quantifica-
tion mechanism, which maps spurious features into a compact
space for effective decorrelation. It also incorporates a sample-
specific reweighting strategy to address data imbalance.

CSIB (Causal Subgraphs and Information Bottlenecks) [50]
leverages SCMs to identify invariant subgraphs that causally
influence labels across environments. It distinguishes FIIF and
PIIF scenarios, and integrates an information bottleneck to sup-
press spurious features, enabling graph OOD generalization under
complex distribution shifts.

G-Splice (Graph Splicing for Structural Linear Extrapola-
tion) [51] integrates SCMs to address graph OOD generalization
by explicitly modeling causal and environmental subgraphs. By
identifying causal patterns from environment-dependent features,
the proposed framework ensures that extrapolated graph structures
maintain causal validity. It leverages SCM to generate diverse and
causally consistent OOD samples through non-Euclidean space
linear extrapolation, significantly enhancing the generalization
capabilities of GNNs under complex distribution shifts.

CaNet (Causal Intervention for Network Data) [52] builds on
causal intervention theory to address the confounding bias in node-
level prediction tasks induced by latent environments. It introduces
an environment estimator to infer pseudo-environment labels,
dynamically guiding a mixture-of-experts GNN predictor. This
collaborative learning framework ensures that stable, environment-
insensitive relations are captured, improving generalization across
diverse distribution shifts.

E-invariant GR [53] proposes a twin network directed acyclic
graph [114] as their SCM to learn size-invariant graph represen-
tations (GR) that better extrapolate between test and train graph
data. Different from the SCMs mentioned above, the proposed
SCM depicts the more complex and fine-grained relations among
several variables, including graphon, train/test environment, node
feature, edge, and graph size. In this SCM, the training graph
is characterized by a graphon, which defines both the label and
structural and attribute characteristics of graphs. The training
environment is indicated by one unobserved environment variable
that represents specific graph properties in terms of environments
so that it could change between the training and test set. Based
on this SCM, the authors propose an approximately size-invariant
graph representation that is able to extrapolate to OOD test data
and prove that the learned graph representation can perform no
worse on the OOD test data than on a test dataset having the
same environment distribution as the training data. Furthermore,
this method can achieve extrapolations based on only one training
environment (e.g., all training graphs have the same size).

Since E-invariant GR [53] only studies the OOD generalization
of GNNs for graph classification, gMPNN•• [54] further extends
it to study the OOD generalization of GNNs for link prediction
in a similar setting, where test graph sizes are larger than training
graphs. Specifically, the authors first proposed a SCM assuming

the data generation process for the goal to learn link predictors that
generalize under distribution shifts on graph sizes. And they prove
nonasymptotic bounds to indicate that as the sizes of test graphs
increase, the link predictors based on permutation-equivariant
structural node embeddings will converge to a random guess.
They show that the output structural pairwise embeddings can
converge to embeddings of a continuous function that achieves
OOD generalization in link prediction tasks.

4.2.3 Counterfactual Inference and Granger Causality
based Methods
Besides, some graph OOD methods are inspired by counterfactual
learning [113], which is at the highest level in the causation
ladder [115] and answers what would happen in another possible
world if something had or had not happened. And some methods
are motivated by Granger causality [116], which describes a causal
relationship between variables of some feature and label if we are
better able to predict label using all available information than if
the information apart from such feature had been used.

CFLP (Counter-Factual Link Prediction) [55] focuses on
OOD link prediction tasks to learn the causal relationship between
the global graph structure and link existence by training GNN-
based link predictors to predict both factual and counterfactual
links. It aims to deal with the counterfactual question: “would
the link still exist if the graph structure became different from
observation?” By answering this question, the counterfactual links
will be used to train the graph encoder for producing OOD gen-
eralized representation. To generate counterfactual link samples,
this method employs causal models that treat the information (i.e.,
learned representations) of node pairs as context, global graph
structural properties as treatment, and link existence as outcome.
After that, the proposed model can generate counterfactual training
link samples and thus learn representations from both the factual
(i.e., observed) and counterfactual (i.e., generated) links for im-
proving OOD generalization.

Gem [56], built upon the Granger causality, inputs the original
computation graph into the explainer and outputs a causal explana-
tion graph, exhibiting better generalization abilities. This method
considers there exists a causal relationship between this edge/node
and its corresponding prediction if the prediction performance
decreases as some node or edge is missing. Since graph data
is inherently interdependent, where nodes and their edges are
correlated variables, it further incorporates various graph rules,
e.g., connectivity check, to encourage the obtained explanations
to be valid and human-intelligible causal subgraphs. Finally, this
method can provide interpretable causal explanations and OOD
generalized predictions for GNNs.

5 LEARNING STRATEGY

Besides graph data augmentation and graph models, some works
focus on exploiting training schemes with tailored optimization
objectives and constraints to promote OOD generalization, includ-
ing graph invariant learning, graph adversarial training, and graph
self-supervised learning.

5.1 Graph Invariant Learning
First, we introduce the graph invariant learning methods for OOD
generalization.

Invariant learning, which aims to exploit the invariant rela-
tionships between features and labels across different distributions
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while disregarding the variant spurious correlations, can prov-
ably achieve satisfactory OOD generalization under distribution
shifts [117–119]. When assessing causality is challenging or the
strong assumptions are potentially violated in practice, it can
approximate the task by searching features that are invariant under
distribution shifts [118] for OOD generalization. Invariant learning
assumes that the information of each instance for prediction
includes two parts, i.e., invariant part whose relationship with
the label is stable across different environments, and variant part
whose relationship with the label can change across different
environments. A good OOD generalization can be obtained when
making predictions only on the invariant information. Along
this line, there are mainly two types of graph invariant learning
methods: invariance optimization [57, 59, 60, 63, 67] and explicit
representation alignment [70–72].

5.1.1 Invariance Optimization
These methods are built upon the invariance principle to address
the graph OOD generalization problem. The invariance principle
assumes the invariance property inside the data, so that it can
find such invariance in multiple environments to achieve OOD
generalization. The assumption can be formulated as:

Assumption 1. (Invariance Assumption). There exists a por-
tion of information Φ(X) inside input instance X such that
∀e, e′ ∈ supp(E), P e(Y |Φ(X)) = P e′(Y |Φ(X)), where E
denotes all possible environments and Φ(X) is often called as
invariant rationales of input instance X .

Following the recent invariant learning based OOD general-
ization studies [117–119], these invariance optimization methods
treat the cause of distribution shifts between testing and training
graph data as a potential unknown environmental variable e. The
optimization objective can be formulated as:

min
fθ

max
e∈supp(E)

R(fθ|e), (3)

where R(fθ|e) = EX,Y∼P e [ℓ(fθ(Φ(X)), Y )] is the risk of
the fθ on the environment e that makes predictions based on
the invariant information Φ(X). Therefore, as shown in the last
column of Table 2, this type of methods relies on explicit multiple-
environment split (indicated by |E| > 1) that can be provided in
advance or generated during the training process.

GIL (Graph Invariant Learning) [57] is proposed to capture
the invariant relationships between predictive graph structural
information (i.e., subgraphs or rationales) and labels under dis-
tribution shifts for graph-level OOD generalization. One of the
main challenges for graph invariant learning is that the environ-
ment labels for graphs is generally unobserved or prohibitively
expensive to collect, leading that it is difficult to learn invariance
in multiple environments. Therefore, this method first studies
invariant learning without explicit environment split. Specifically,
GIL jointly optimizes three mutually promoting modules, includ-
ing the invariant subgraph identification module, the environment
inference module, and the invariant learning module. First, the
invariant subgraph identification module is a GNN-based subgraph
generator Φ(·). Given the input graph G, it identifies the invari-
ant subgraph Φ(G) and defines the rest of the graph, i.e., the
complement of invariant subgraph, as the variant subgraph and
denote it as G\Φ(G). Then, the environment inference module
cluster all identified variant subgraphs of the datasets to infer
the latent environments. The intuition is that since the invariant

subgraph captures invariant relationships between predictive graph
structural information and labels, the variant subgraphs in turn
capture variant correlations under different distributions, which are
environment-discriminative features. Finally, the invariant learning
module optimizes the proposed maximal invariant subgraph gener-
ator criterion given the identified invariant subgraphs and inferred
environments to generate graph representations capable of OOD
generalization under distribution shifts. Theories are provided to
show that the OOD generalization problem on graphs is equivalent
to finding a maximal invariant subgraph generator of GIL, and
further prove that GIL satisfies permutation invariance.

C2R (Cooperative Classification and Rationalization) [58]
further proposes a cooperative framework by integrating classifica-
tion and rationalization modules. By clustering non-rationale sub-
graphs across the dataset, C2R infers global environments instead
of local environment, and feeds them to enhance classification,
which can improve OOD generalization under distribution shifts.

DIR (Discovering Invariant Rationale) [59] is proposed to han-
dle graph-level OOD generalization tasks by discovering invariant
subgraphs Φ(G) for GNN under interventional distributions. The
basic setting of DIR is also different from the traditional setting
where environments are observable and attainable, but follows a
similar setting with GIL that does not assume explicit environment
split in advance. In detail, it uses a GNN-based subgraph generator
to split the input graph into invariant and variant subgraphs under
distribution shifts, which are encoded by the encoder into repre-
sentations respectively. Then, the proposed distribution intervener
conducts interventions on the variant representations to create
multiple interventional distributions as the multiple environments.
Finally, the two classifiers that are respectively built upon the
invariant and variant subgraphs make predictions for the input
graph instance jointly, so that the invariant risk is minimized across
different environments. With this strategy, DIR can capture the
invariant rationales that are stable across different distributions
while filtering out the spurious patterns for OOD generalization.

GSAT (Graph Stochastic Attention) [60] addresses graph-level
OOD generalization problem utilizing the attention mechanism to
build inherently interpretable GNNs for learning invariant sub-
graphs Φ(G) under distribution shifts. The learned invariant sub-
graphs of GSAT root in the notion of information bottleneck [120].
The attention is formulated as the information bottleneck by inject-
ing stochasticity into the attention mechanism so as to constrain
the information flow from the input graph to the prediction. The
injected stochasticity over the invariant label-relevant subgraphs
can be automatically reduced during the training stage, while that
over the variant label-irrelevant subgraphs can be kept. Besides,
GSAT also penalizes the amount of information from the input
graph data. Finally, GSAT can output the interpretable and OOD
generalizable subgraphs that provably do not contain patterns that
are spuriously correlated with the task under some assumptions.

UIL (Unified Invariant Learning) [61] proposes a unified
framework for graph OOD generalization by jointly enforcing
structural and semantic invariance. It separates stable and envi-
ronmental features via node- and edge-level masks, then estimates
stable graphons to capture class-specific structural patterns. By
minimizing graphon distances across environments and enforcing
label-consistent predictions, it accurately identifies minimal stable
features.

VIVACE (Variance Contrastive Estimation) [62] highlights the
importance of variant subgraphs, which carry environment-related
information often overlooked in prior work. It proposes leveraging
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variant subgraphs to estimate spurious correlations and guide the
identification of invariant subgraphs. A reweighting mechanism
based on inverse propensity scores is further introduced to correct
for spurious effects, leading to enhanced OOD generalization.

Besides the graph-level OOD generalized methods, EERM
(Explore-to-Extrapolate Risk Minimization) [63] is designed to
handle node-level tasks under distribution shifts, which can
achieve a valid solution for the node-level OOD problem under
mild conditions. First, to account for the non-IID nature of nodes
on graphs, this method proposes to transform a graph into a set of
ego-graphs for center nodes, so that it can formulate the node-level
OOD generalization problem inspired by the graph-level problem.
Then, it extends the invariance principle with the recursive com-
putation on the induced BFS trees of ego-graphs to consider the
structural information. Finally, the GNN backbone is optimized by
minimizing the mean and variance of risks from multiple training
environments that are generated by the environment generators,
while the environment generators are trained by maximizing the
variance loss via a policy gradient method.

INL (Invariant Node Representation Learning) [64] also builds
upon the invariant learning principle to address distribution shifts
in graph data with multiple latent environments. By defining
invariant and variant patterns as ego-subgraphs, INL employs
contrastive modularity-based graph clustering to infer node envi-
ronments. It then optimizes a maximal invariant pattern criterion to
produce node representations that generalize effectively to unseen
distributions. Theoretical guarantees support its performance, and
experiments on both synthetic and real-world datasets demonstrate
substantial gains over state-of-the-art methods in node classifica-
tion tasks under distribution shifts.

FLOOD (Flexible Invariant Learning for Out-Of-Distribution
Generalization) [65] further introduces a dual approach: invariant
representation learning and bootstrapped representation learning.
By constructing training environments and also refining the shared
encoder during the test phase, FLOOD achieves improved OOD
generalization. This framework effectively addresses distribution
shifts in both transductive and inductive settings.

GraphMETRO (Graph Mixture-of-Experts for OOD gener-
alization) [66] tackles distribution shifts by leveraging a mixture-
of-experts (MoE) framework. Each expert is trained to mitigate
a distinct shift component, such as graph size, node degree, or
feature noise, via stochastic graph transformations. A gating model
dynamically identifies the relevant shift components per input
and guides the aggregation of expert outputs into an invariant
representation. This architecture enables flexible modeling of
heterogeneous distribution shifts.

DIDA (Disentangled Intervention-based Dynamic Graph At-
tention Network) [67] is the first method to handle graph OOD
generalization under more complex spatial-temporal distribution
shifts. The existing methods usually focus on only spatial distri-
bution shifts existing on node features or graph structures while
can not be directly utilized in more complex scenarios where the
distribution shifts can simultaneously exist in spatial and temporal
information. Specifically, it first designs a disentangled spatial-
temporal attention network to discover the invariant and variant
patterns behind the dynamic graphs, which enables each node to
attend to all its historic neighbors through a disentangled atten-
tion message-passing mechanism. Then, it introduces a spatial-
temporal intervention mechanism to create multiple intervened
distributions via sampling and reassembling the variant patterns
across neighborhoods and time, leading that the spurious correla-

tions between the variant patterns and labels can be eliminated.
Note that the variant patterns are highly entangled across nodes
and it is computationally expensive if directly generating and mix-
ing up subsets of structures and features to do intervention. So, this
method approximates the intervention process with summarized
patterns obtained by the disentangled spatio-temporal attention
network instead of the original structures and features. Lastly, the
invariance regularization is used to minimize prediction variance
in multiple-intervened distributions for learning invariant patterns.

Furthermore, SILD (Spectral Invariant Learning for Dynamic
Graphs) [68] extends DIDA to spectral domain with discovering
the invariant and variant spectral patterns for handling distribution
shifts on dynamic graphs. EAGLE (Environment-Aware Dynamic
Graph Learning) [69] addresses OOD generalization on dynamic
graphs by modeling spatio-temporal latent environments through
environment-aware convolution and disentanglement. It can model
invariant patterns while mitigating spurious correlations, achieving
good generalization performance under distribution shifts.

5.1.2 Explicit Representation Alignment
The key idea of this line of works is to explicitly align the
graph representations among multiple environments (or domains)
to learn environment-invariant graph representations for OOD
generalization. The graph representation alignment strives to min-
imize the difference (or encourage the similarity) across multiple
environments via the introduced regularization strategy, which can
be formulated as:

min
fθ

EX,Y [ℓ(fθ(X), Y )] + ℓreg(E), (4)

where ℓreg(E) denotes the loss of the adopted regularizer. And
the multiple environments E for calculating the regularizer are
also usually unavailable in advance for most graph scenarios and
are generated during the training process.

SR-GNN (Shift-Robust GNN) [70] proposes to address node-
level OOD generalization in GNNs by explicitly minimizing
the distributional differences between biased training data and
a graph’s true inference distribution of graphs. It encourages
a biased sample of labeled nodes to more closely conform to
the distributional characteristics present in an independent and
identically distributed sample of the graph. The two kinds of
bias occurring in both deeper GNNs and more recent linearized
(shallow) versions of these models can be handled. Specifically,
SR-GNN first addresses the distribution shift via a regularization
over the hidden layers of the network for standard GNN models
(e.g., GCN [121]) that iteratively update information upon the
graph structure. The regularizations for measuring discrepancy
among different distributions can be maximum mean discrepancy
(MMD) [122] or central moment discrepancy (CMD) [123]. Then,
for the linearized models (e.g., SimpleGCN [124]) that decou-
ple GNNs into non-linear feature encoding and linear message
passing, SR-GNN adopts an instance reweighting strategy for
encouraging the training examples to be representative over the
graph data, since the graph can introduce bias over the features
after all learnable layers. It learns a group of optimal instance
weights via kernel mean matching (KMM) [125].

SizeShiftReg [71] aims to train GNNs with good size gener-
alization performance from smaller to larger graphs, which adopts
a similar idea with SR-GNN [70]. It does not rely on handcrafting
GNNs based on specific knowledge or assumptions, but studies a
general regularization for any GNNs to be OOD generalizable to
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the graph size distribution shifts. The introduced graph coarsening
strategy is to simulate the distribution shifts in the size of the
training graphs. And the proposed regularization is expected to
encourage the GNNs to be OOD generalized. For a given training
graph, they minimize the discrepancy measured by CMD [123]
between the distributions of the node representations learned by
the GNNs from the original training graphs and the coarsened
graphs. Under such a training paradigm, the learned GNNs can
achieve OOD generalization among different coarsened versions
of the graph as well as graphs with unknown size.

StableGL [72] focuses on stable graph learning (GL) to cap-
ture environment-invariant node properties and explicitly balance
the multiple environments for generalizing well under distribution
shifts. Given one input graph as the training environment, they aim
to train a GNN that has a high average prediction performance
but a low variance of performance on multiple agnostic testing
environments. In more detail, the proposed method first performs
biased selection on the input training graph to construct multiple
training environments. From a local perspective, since one node
in graph is partially represented by the other neighbor nodes, this
method proposes to capture stable node properties via reweighting
the neighborhood aggregation process. From a global perspective,
the authors find that the prediction errors in different environments
progressively diverge in biased training, eventually leading to
unstable performance across environments. Therefore, the pro-
posed method explicitly aligns the training process by reducing
the training gap among different training environments, enforcing
the learned GNN to generalize well across unseen testing environ-
ments. Different from SR-GNN [70] and SizeShiftReg [71] that
adopt some discrepancy measurement like MMD or CMD, the
regularization in this method is directly to minimize the variance
of training losses in several environments.

5.2 Graph Adversarial Training

In this section, we discuss the graph adversarial learning methods
for OOD generalization. Adversarial training has been demon-
strated to improve model robustness against adversarial attacks
and OOD generalization ability. Here we mainly focus on the
graph adversarial training methods that improve the generalization
ability, while the works protecting GNNs from attacks can be
found in the previous survey [22].

DAGNN (Domain Adversarial GNN) [73] is a method moti-
vated by DANN [126] that is one OOD generalization algorithm
to learn domain (or environment) invariant graph representations
by advocating domain-adversarial learning between the domain
classifier and the encoder. In particular, the first objective is to
minimize the classification loss in terms of the encoder on the
source domain data, and the second objective aims to facilitate the
differentiation between the source and target domains. Such graph
adversarial training strategy can maximally utilize the domain
information to train classifiers for OOD generalized predictions
classification. Note that this method is proposed for text classifi-
cation where the graphs are converted from the documents, thus
the domain (or environment) splits are available in the dataset.

GNN-DRO [74] adopts distributionally robust optimiza-
tion [127] that is one type of classical algorithm to handle distribu-
tion shifts for node-level tasks. The GNN is trained by minimizing
the worst expected loss over the considered Wasserstein ball,
following the assumption that the data distribution resides in a
Wasserstein ball centered at empirical data distribution.

In addition to directly extending existing OOD approaches for
general machine learning to graph data above, there are some other
works taking more account of the properties of graph itself.

GraphAT (Graph Adversarial Training) [75] aims to improve
the model’s generalization via exploring the adversarial training
on graphs. When generating adversarial perturbations on a target
sample, GraphAT maximizes the divergence between the predic-
tion of the target sample and its connected samples, meaning that
the adversarial perturbations should affect the graph smoothness
as much as possible. After that, GraphAT minimizes the graph
adversarial regularizer to update model parameters, reducing the
divergence between the prediction of the perturbed target sample
and its connected samples. And a linear approximation method
for calculating the adversarial perturbations efficiently is derived
based on back-propagation. By resisting the worst-case perturba-
tions, it can enhance model robustness and generalization.

CAP (Co-Adversarial Perturbation) [76] is proposed from the
perspective of loss landscapes during training process. The authors
observe GNNs are prone to falling into sharp local minima in
loss landscapes in terms of model weight and feature. Therefore,
they propose co-adversarial perturbation (CAP) optimization to
flatten the weight and feature loss landscapes alternately, which
can avoid falling into locally sharp minima and improve general-
ization ability. Typically, they formulate the co-adversarial training
objective to minimize the maximum training loss within a couple
regions of model weights and node features. For further tackling
the efficiency problem of co-adversarial training, they decouple the
training objective and devise the alternating adversarial perturba-
tions: one step to conduct the adversarial weight perturbation and
training GNNs, as well as another step to calculate the adversarial
feature perturbation for each node to update GNNs.

WT-AWP (Weighted Truncated Adversarial Weight Perturba-
tion) [77] follows the line that flatting local minima to improve
generalization for OOD graph data. Since directly applying exist-
ing adversarial weight perturbation techniques to train GNNs is
not effective in practice induced by the vanishing-gradient issue,
WT-AWP uses the loss of adversarial weight perturbation as an
additional regularizer with the loss function (e.g., standard cross-
entropy) for training GNN. It also removes perturbation in the
last layer of the GNN for a more fine-grained control of the
training dynamics. Besides the designs for training strategy, a
generalization bound for OOD graph classification is also derived.

OAD (Online Adversarial Distillation) [78] is an online ad-
versarial knowledge distillation technique for GNNs. Different
from the above methods that introduce adversarial training into
the training process of GNNs, this method brings adversarial
training to solve the problem caused by the knowledge distillation.
Motivated by the knowledge distillation technique can improve
the OOD generalization, OAD trains a group of student GNNs
in an online fashion with both global and local knowledge. By
transferring informative knowledge of teacher network, the OOD
generalization performance of student network can be enhanced.
To learn the complex structure of the local knowledge, adversarial
cyclic learning is proposed to achieve more accurate embedding
alignment among student models. It is not only more efficient than
vanilla knowledge distillation technique with fewer parameters,
but also more effective to handle graph distribution shift.

5.3 Graph Self-supervised Learning
Finally, we introduce the graph self-supervised learning methods
for OOD generalization.
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Self-supervision as an emerging technique has been employed
to train neural networks for more generalizable predictions on
the image field [128–130]. It is also shown that self-supervised
learning can benefit GNNs in gaining more generalization abil-
ity [131], whose motivations are as follows. First, the self-
supervised learning tasks encourage the GNN models to capture
salient critical information of the input graph while avoiding the
learned representations trivially overfitting “shortcuts” informa-
tion as supervised learning, leading to better OOD generalization.
Then, Xu et al. [132] also attribute such success to that self-
supervised learning could map semantically similar data to similar
representations and therefore some OOD testing data might fall
inside the training distribution after the mapping.

Here we mainly review the typical graph self-supervised
methods that claim to improve the graph OOD generalization. For
more details of other graph self-supervised methods, the readers
could refer to the surveys [20, 21].

Pretraining-GNN [79] explores several graph pre-training
techniques on both node-level and graph-level to improve OOD
generalization of GNNs. They encourage GNNs to capture
domain-specific knowledge about nodes and edges, in addition to
graph-level knowledge such that the learned representations can be
more OOD generalized. For node-level pre-training of GNNs, they
propose two self-supervised methods, i.e., context prediction and
attribute masking. For graph-level pre-training of GNNs, they also
provide two options including making predictions about domain-
specific attributes of entire graphs (e.g., supervised labels), or
making predictions about graph structure namely modeling the
structural similarity of two graphs. Overall, such pre-training strat-
egy for GNNs is to first perform node-level self-supervised pre-
training and then graph-level multi-task supervised pre-training.

PATTERN [80] is proposed to study the ability of GNNs
to generalize from small to large graphs, by proposing a self-
supervised pretext task that aims at learning useful d-pattern repre-
sentations. Although GNNs can naturally be applied to graphs with
different sizes, it is largely unknown about the mechanism of such
size OOD generalization of GNNs. Therefore, the authors first
formalize a representation of local structures called d-patterns for
characterizing generalization to new graph sizes. The d-patterns
generalize the notion of node degrees to a d-step neighborhood
of the center node, which models the values of the node and its
d-step neighbors, as seen by GNNs. It is proved that even only a
small discrepancy in the d-patterns distribution between the testing
and training distributions may result in weight assignments that do
not generalize well, indicating the existence of bad global minima
with poor generalization. Then, the self-supervised pretext task is
proposed aiming at learning useful d-patterns representations from
both small and large graphs improving the OOD generalization on
graph size with noticeable gains.

DR-GST (Distribution Recovered Graph Self-Training) [81]
is a graph self-training framework that can recover the original
labeled dataset without distribution shifts. Specifically, it first
shows that the equality of loss function in self-training framework
under the distribution shifts and the population distribution if each
pseudo-labeled node is weighted by a proper coefficient. Due to
the intractability of the coefficient, it replaces the coefficient with
the information gain after discovering the same changing trend
between them. The information gain is respectively estimated
via both dropout variational inference and dropedge variational
inference. Then, it can recover the shifted distribution with the
proposed information gain weighted loss function, which forces

the GNN to focus on nodes with high information gain. Overall,
DR-GST tackles the distribution shift problem from the perspec-
tive of information gain, and proposes a loss correction strategy
to improve qualities of pseudo labels. Therefore, more unlabeled
nodes can be assigned with pseudo labels whose distribution is
the same as that of labeled nodes so as to benefit the OOD
generalization ability.

Besides, graph contrastive learning can also be adopted to
promote OOD generalization.

GraphCL (Graph Contrastive Learning) [30] is one of the
representative self-supervised learning methods for GNNs and has
shown its generalization ability in practice. The authors argue that
self-supervision with handcrafted pretext tasks relies on heuristics
to design, and thus could limit the generality of the learned
graph representations. Therefore, they develop the contrastive
learning method GraphCL, whose key idea is to make graph
representations agree with each other under the proposed four
types of transformations for the input graph. The generalizability
ability of GraphCL is verified on molecular property prediction in
chemistry and protein function prediction in biology.

RGCL (Rationale-aware Graph Contrastive Learning) [82] is
proposed to automatically discover rationales as graph augmen-
tations in contrastive learning for further improving the general-
ization performance in unseen domains with distribution shifts.
The authors claim that despite promising performance of some
representative methods like GraphCL, etc., the intrinsic random
nature makes them suffer from potential semantic information
loss, thus hardly capturing the salient information and under-
mining the generality ability. RGCL is proposed to tackle this
problem, which consists of two modules, i.e., rationale generator
and contrastive learner. The rationale generator decides fractions
to reveal and conceal in the graph, and yields the rationale encap-
sulating its instance-discriminative information. The contrastive
learner makes use of rationale-aware views to perform instance-
discrimination of graphs. Thus, it can prevent losing discriminative
semantics in augmented views as random augmentation and in turn
preserve more rationale information with generalization ability.

GAPGC (Graph Adversarial Pseudo Group Contrast) [83] is
a test-time training method designed for GNNs with a contrastive
loss variant as the self-supervised objective during testing. Re-
cently the effectiveness of test-time training has been validated
to improve the performance on OOD test data, where some
self-supervised auxiliary tasks are proposed. The authors argue
that the simple augmentations in self-supervised training (e.g.,
randomly dropping nodes or edges) could harm the label-related
critical information in graph representations. Therefore, GAPGC
generates relatively reliable pseudo-labels, avoiding the severe
shifts caused by the incorrect positive samples. The proposed
adversarial learnable augmenter and group pseudo-positive sam-
ples can promote the relevance between the self-supervised task
and the main task, so as to enhance the performance of the main
task. The theoretical evidence is also derived to show that GAPGC
can capture minimal sufficient information for the main task from
information theory perspective, which benefits the predictions on
the OOD testing data.

GT3 (Graph Test-Time Training with Constraint) [84] is
another test-time training method on graphs, which proposes a
hierarchical self-supervised learning framework. Specifically, it
first introduces the global contrastive learning strategy to en-
courage node representations to capture the global information
of the whole graph. The global contrastive learning is based on
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TABLE 3: Commonly used synthetic and real-world graph datasets for OOD generalization. “Task” denotes each dataset can be used
in graph-level, node-level task or link-level task. “Type” indicates what kind of graph data that each dataset includes. “Cause of Shifts”
indicates the reason for inducing distribution shifts between training and testing data. “Metric” is the evaluation metric adopted by each
dataset. And “References” denotes the work developing each dataset.

Dataset Task Type Cause of Shifts Metric References

Spurious-Motif Graph Synthetic Graph Correlations Accuracy [59]
MNIST-75sp Graph Superpixel Graph Feature Noises Accuracy [133]
CMNIST-75sp Graph Superpixel Graph Feature Colors Accuracy [92, 134]
D&D200 Graph Molecular Graph Graph Size Accuracy [133]
Graph-SST2 Graph Text Sentiment Node Degree Accuracy [135]
OGBG-Molhiv Graph Molecular Graph Scaffold ROC-AUC [7]
OGBG-Molpcba Graph Molecular Graph Scaffold Average Precision [7]
OGBG-PPA Graph Protein Network Species Accuracy [7]
DrugOOD Graph Molecular Graph Assay/Scaffold/Size Accuracy/AUC [136]

CBA-Shapes Node Synthetic Graph Feature Colors Accuracy [134]
Facebook-100 Node Social Network Structure Accuracy [63]
WebKB Node Webpage Network Structure Accuracy [134]
Twitch-Explicit Node Social Network Structure ROC-AUC [137]
Elliptic Node Bitcoin Transactions Time F1 Score [138]
OGBN-Arxiv Node Citation Network Time Accuracy [7]
OGBN-Proteins Node Protein Network Species ROC-AUC [7]
OGBN-Products Node Co-purchasing Popularity Accuracy [7]

COLLAB Link Collaboration Network Field ROC-AUC [67]
Yelp Link Social Network Food Category ROC-AUC [67]
ACT Link Social Network Attribute ROC-AUC [69]
OGBL-PPA Link Protein Network Biological Throughput Hits@100 [7]
OGBL-DDI Link Drug Interaction Network Protein-target Hits@20 [7]

maximizing the mutual information between the local node repre-
sentation and the global graph representation. Then, it presents the
local contrastive learning for distinguishing different nodes from
different augmented views of a graph, so that the node represen-
tation can capture more local information. Besides, an additional
constraint is proposed to encourage that the representations of
testing samples are close to the representations of the training
samples. The model’s OOD generalization capacity for the graph
classification task can be enhanced based on this test time training
strategy with self-supervised learning.

HomoTTT (Homophily-guided Fully Test-Time Train-
ing) [85] is a model-agnostic framework for node classification
under OOD settings. It performs fully test-time training us-
ing a parameter-free, homophily-based self-supervised contrastive
learning objective with adaptive graph augmentation. To avoid
performance degradation, it further introduces a homophily-based
model selection to selectively apply the adapted model per node.

6 THEORY

In this section, we review some literature focusing on theoretical
analyses of the generalization of GNNs.

First, there are some theories mainly developed to derive
the generalization bound of GNNs based on different statistical
learning theories. Scarselli et al. [139] provide a generalization
bound for GNNs based on VC-dimension [140]. The authors
find that the upper bounds on the VC-dimension for GNNs are
comparable to the upper bounds for the recurrent neural networks,
meaning that the generalization capability of GNNs increases with
the number of connected nodes. Verma & Zhang [141] take a
further step towards deriving a theoretical analysis of GCN [121]
based on algorithmic stability [142] and provide generalization
bounds for one-layer GCN. They conclude that one-layer GCN
with stable graph convolution filters can satisfy the strong notion
of uniform stability and therefore are generalizable.

Garg et al. [143] study the generalization properties of GNNs
on graph classification based on Rademacher complexity. The
generalization analysis explicitly considers the local permuta-
tion invariance of the GNN aggregation function. The derived
Rademacher bounds are tighter than the VC bounds from [139]
for GNNs. Lv [144] adopts similar theoretical basis with the
work [143], providing the Rademacher complexity bound for
GCNs with one single hidden layer. The primary difference is
that this work accounts for the specific node-level task of GCNs,
which only involves a fixed adjacency matrix.

Liao et al. [145] establish a PAC-Bayesian generalization
bound of GNNs on graph classification. It further improves
upon the Rademacher complexity based bound proposed in the
work [143], deriving a tighter dependency on the maximum node
degree and the maximum hidden dimension. Also, Ma et al. [146]
present a PAC-Bayesian analysis for generalization performances
of GNNs on subgroups of nodes under non-IID node-level tasks,
which is the key difference compared with the work [145].

Du et al. [147] establish Graph Neural Tangent Kernel
(GNTK) to characterize the generalization bound of GNNs on
graph classification. GNTK is induced by infinitely wide GNNs,
whose prediction depends only on pairwise kernel values between
graphs, and can be calculated efficiently with an analytic formula.
It enjoys the expressive power of GNNs, while inheriting the
benefits of graph kernels, e.g., easy to train, provable theoretical
guarantees, etc. Based on GNTK, Xu et al. [132] derive theoretical
evidence of generalization capabilities in one-layer GNNs and
study the effect of the alignment of network architecture and target
algorithmic tasks on OOD generalization. Along with this line,
Zhang et al. [148] prove that using proper tensor initialization
and accelerated gradient descent, their algorithm can learn a
GNN with one hidden layer having the zero generalization error
for regression problems or sufficiently close to the ground-truth
model, assuming such a ground-truth model exists.

Considering most methods mentioned above are developed
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based on that graph data can be generated and labeled in any
arbitrary way which is hard to be satisfied in practice, some works
establish generalization bounds that depend on the graph data
as follows. Baranwal et al. [149] study OOD generalization of
GNNs under a specific data generating mechanism namely contex-
tual stochastic block model and analyze the relation between linear
separability and OOD generalization on graphs. The generaliza-
tion guarantee for one-layer GCNs on binary node classification is
derived. Furthermore, Maskey et al. [150] consider a generative
model graphons for the graphs which is not only theoretically
powerful and general, but allows tighter generalization bounds.

In addition to deriving the generalization bound, there are
also some theoretical frameworks on causality, invariant learning,
and information bottleneck to analyze the OOD generalization
capabilities.

Causal inference offers a strong theoretical foundation for
improving OOD generalization by focusing on stable causal
relationships between input features and labels. Unlike spurious
correlations that are sensitive to distribution shifts, causal features
remain invariant across environments, providing a reliable basis
for OOD generalized predictions. Theoretical frameworks such
as structural causal models (SCMs) [46, 48, 51] and causal
intervention [52] facilitate the identification and utilization of
these causal features, enabling models to capture the true determi-
nants of labels. Additionally, counterfactual reasoning [55] could
enhance this perspective by considering hypothetical scenarios,
thereby allowing models to better generalize to unseen data. These
approaches collectively underline the importance of causality in
addressing distribution shifts and establishing a principled basis
for generalization, ensuring that predictions are reliable across
diverse environments.

Invariant learning provides a principled theoretical framework
for OOD generalization by focusing on identifying and leverag-
ing features that maintain stable relationships with labels across
different environments [117–119]. This approach assumes that the
input data can be decomposed into invariant components, which
are consistent predictors of the target, and variant components,
which are spurious and environment-specific. The key idea is
to optimize for predictive performance while ensuring invariance
across training distributions, thereby aligning model predictions
with the stable causal mechanisms underlying the data. From
a theoretical standpoint, invariant learning relies on the invari-
ance principle, which assumes that the conditional distribution
of the label given the invariant features should remain constant
across environments. This principle is often adopted through op-
timization objectives that minimize risks across multiple training
environments or regularization techniques that explicitly enforce
alignment in representation spaces [57, 59, 64]. By focusing on
invariant patterns and discarding variant ones, invariant learning
not only enhances OOD generalization but also offers theoretical
guarantees under certain assumptions, such as the existence of
sufficient environmental diversity [69] or latent invariance within
the data [67, 68]. By ensuring that predictions are grounded in
invariant features, this framework establishes a foundation for
graph OOD generalization.

Information Bottleneck (IB) theory is used in some works for
generalized graph learning. The key idea is to maximize the mu-
tual information between task-relevant subgraphs and labels while
constraining information from task-irrelevant graph components.
For example, GSAT [60] jointly trains the predictor and sub-
graph extractor, leveraging a stochastic attention mechanism for

the information control. InfoIGL [151] introduces a redundancy
filter combined with multi-level contrastive learning to extract
invariant features of graphs, maximizing the mutual information
among graphs of the same class and reducing task-irrelevant noise.
Finally, the derived IB-based objective guarantees the removal of
spurious correlations, improving OOD generalization.

7 DATASETS FOR EVALUATION

To promote further research of graph OOD generalization, we
summarize the existing popular graph datasets for evaluation in
Table 3. There are three groups of datasets, including datasets for
graph-level, node-level, and link-level tasks. These datasets cover
multiple sources of graphs (e.g., social network, citation network,
molecular graph, etc) and their causes of distribution shifts are
also complex and diverse (e.g., time, species, scaffold, etc.).

7.1 Datasets for Graph-level Tasks
First, we review some representative datasets for evaluating the
model performances on graph classification tasks.

Spurious-Motif [59]: It is a synthetic dataset created by
following the work [152], which is designed for distribution shifts
on graph structure. Each graph consists of one motif and one base
subgraph. The base subgraph includes Tree, Ladder, and Wheel
(denoted by V = 0, 1, 2, respectively) and the motif includes
Cycle, House, and Crane (denoted by I = 0, 1, 2). The ground-
truth label Y only depends on the motif I , which is sampled
uniformly. The spurious correlation between V and Y is injected
by controlling the base subgraphs distribution as: P (V ) = b if
V = I and P (V ) = (1 − b)/2 if V = I . Intuitively, b controls
the strength of the spurious correlation. It can set b to different
values in the testing and training set to simulate distribution shifts.

MNIST-75sp [133]: It is a semi-artificial dataset, where each
graph is converted from an image in MNIST [153] using superpix-
els [154]. The nodes are superpixels, and the edges are calculated
by the spatial distance between nodes. The node features are the
super-pixel coordinates and intensity. The task is to classify each
graph into the corresponding handwritten digit labeled from 0 to 9.
To simulate distribution shifts on graph features, it generates test-
ing graphs by colorizing images, i.e., adding two more channels
and adding independent Gaussian noise to each channel.

CMNIST-75sp [92, 134]: It is also a semi-artificial dataset,
consisting of graphs converted from the images in MNIST us-
ing superpixels. Different from MNIST-75sp that adds noise to
simulate distribution shifts, CMNIST-75sp colorizes the digits
with different colors according to the digit labels or dataset split,
inspired by the work [117]. Note that there are two choices of
CMNIST-75sp to simulate the covariate shifts or concept shifts
respectively. For the former choice, the testing data are colorized
with unseen colors compared with the colors for the training data.
For the latter choice, the colors are correlated with the digit labels
for the training data, while colors have different correlations with
labels for testing data, respectively.

D&D200 [133]: It is a real-world graph classification dataset
that consists of 1,178 protein network structures with 82 discrete
node labels. The task is to classify each graph into enzyme or
non-enzyme class. To create distribution shifts on graph sizes, the
training and testing sets are split by graph sizes, i.e., the models are
trained on small graphs but tested on larger graphs. Specifically,
the training set includes graphs with 30 to 200 nodes while the
testing set includes graphs with 201 to 5,748 nodes.
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Graph-SST2 [135]: It is a real-world graph dataset originating
from a natural language sentimental analysis dataset. Each graph
is converted from a text sequence, where nodes represent words,
edges indicate relations between words, and label is the sentence
sentiment. Graphs are split into different sets according to average
node degree to create distribution shifts. The node features are ini-
tialized by the pre-trained BERT word embedding [155]. Thanks
to the graph semantics, this dataset is more human-understandable
for visualizing or analyzing some intermediate results.

OGBG [7]: Open Graph Benchmark (OGB) is a benchmark
consisting of realistic, large-scale, and diverse datasets for ma-
chine learning on graphs, where OGBG is a subset including sev-
eral representative datasets for evaluation OOD generalization in
graph-level tasks, e.g., OGBG-Molhiv, OGBG-Molpcba, OGBG-
PPA, etc. Specifically, OGBG-Molhiv and OGBG-Molpcba are
two graph property prediction datasets with distribution shifts.
The task is to predict the target molecular properties. The dataset
provides the default scaffold splitting procedure, i.e., splitting
the graphs based on their two-dimensional structural frameworks.
Note that this scaffold splitting strategy aims to separate struc-
turally different molecules into different subsets, which provides
a more realistic and challenging scenario for testing graph OOD
generalization. And OGBG-PPA consists of undirected protein
association neighborhoods extracted from the protein-protein as-
sociation networks of 1,581 different species. The task is to predict
what taxonomic group the given protein association neighborhood
graph originates from. The dataset adopts species split, i.e., sepa-
rating graphs from different species into different subsets.

DrugOOD [136]: It is a benchmark for AI-aided drug discov-
ery, including some realistic molecular graph datasets. It provides
an automated pipeline for curating OOD datasets based on a large-
scale bioassay dataset ChEMBL [156]. It presents diverse dataset
splitting indicators than OGB to generate specific domains that are
aligned with the domain knowledge of biochemistry. Rather than
only adopting scaffold as the indicator of dataset splitting, it can
provide more choices for separating graphs into different subsets
in terms of assay and size to create distribution shifts.

7.2 Datasets for Node-level Tasks

Then, we review some representative datasets for evaluating the
model performances on node classification tasks.

CBA-Shapes [134]: It is a synthetic dataset created by fol-
lowing the BA-Shapes dataset from the work [152]. The input
graph contains a base graph and a set of motifs, where the base
graph is a Barabási-Albert (BA) graph on 300 nodes and the set of
motifs includes 80 house-structured motifs. The task is to predict
the structural role of each node, including the top, middle, or
bottom node of a house-structured motif, or the node from the
base graph, i.e., a 4-class classification task. Node features are
assigned with colors to create distribution shifts, which also have
two choices to simulate the covariate shifts or concept shifts. For
the former choice, the testing nodes are colorized with unseen
colors compared with the colors of the training nodes. For the
latter choice, the colors are correlated with the labels of the
training nodes, while colors have different correlations with labels
of the testing nodes, respectively.

Facebook-100 [63]: It is a real-world node classification
dataset which consists of 100 Facebook social network snapshots
from the year 2005. Each network contains nodes as Facebook
users from a specific American university. The distribution shifts

can be introduced by splitting training and testing sets via select-
ing different universities that the users in a network are from,
since these networks have significantly diverse sizes, densities
and degree distributions. For example, the default dataset split
in the work [63] is to adopt the corresponding networks from
three of fourteen universities (e.g., John Hopkins, Cornell, etc.) as
training set, and the network from another three universities (i.e.,
Penn, Brown and Texas) as the testing set. Of course, the other
combinations can also be used to evaluate the node-level OOD
generalization ability.

WebKB [134]: It is a real-world university webpage network
dataset for node classification. The nodes denote webpages and
edges are hyperlinks between two webpages. The node features
are from the words appearing in the webpage. The task is to predict
the classes of webpages including student, project, course, staff,
or faculty. The distribution shifts are from splitting the dataset
conforming to the domain university. The OOD generalized pre-
dictions can be achieved when only using the word contents and
hyperlinks of webpages rather than using the university features.

Twitch-Explicit [137]: It is a real-world social network
dataset, where nodes are Twitch users and edges are friendships
between two users. Node features are games liked, location and
streaming habits. Each network is collected from a specific region,
including DE, ENGB, ES, FR, PTBR, RU and TW. The seven
networks have significantly different structural properties, e.g.,
densities and maximum node degrees [63]. The distribution shifts
between training and testing sets are from splitting the dataset
according to the network region.

Elliptic [138]: It is a realistic Bitcoin transaction network
dataset consisting of several snapshots, where nodes are trans-
actions and edges are payment flows. The task is to distinguish
between licit and illicit transactions in future data. By adopting
older snapshots in terms of time as the training set while newer
snapshots as the testing set, the distribution shifts can be observed
due to some emerging events in the market.

OGBN [7]: It includes some node properties predic-
tion datasets, e.g., OGBN-Arxiv, OGBN-Proteins, and OGBN-
Products, which is another subset of the whole OGB [7]. Specifi-
cally, OGBN-Arxiv is a real-world citation dataset, where nodes
are arXiv papers, and edges are citations between papers. Its 40-
class prediction task is to predict the subject area of arXiv papers.
The node distribution shifts are introduced by splitting papers from
different time ranges into training and testing sets. And OGBN-
Proteins a protein graph, where nodes represent proteins and
edges indicate different types of biologically meaningful associa-
tions between proteins. The task is to predict the presence of pro-
tein functions. The distribution shifts are introduced by splitting
protein nodes into different subsets according to the species that
the proteins come from. OGBN-Products is an Amazon product
co-purchasing network. Nodes represent products in Amazon, and
edges indicate that the two products are purchased together. The
task is to predict the product category. The distribution shifts
are created by a more challenging and realistic dataset splitting
according to the popularity of products, i.e., using the popular
products for training but relatively unpopular products for testing.

7.3 Datasets for Link-level Tasks
Furthermore, we review some representative datasets for evaluat-
ing the model performances on link prediction tasks.

COLLAB [67]: It is a link prediction dataset derived from
academic collaboration networks. Nodes represent authors, and
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edges denote coauthorships on papers published between 1990
and 2006. The dataset is enriched with field-specific information,
categorizing edges by the coauthored publication’s field, such
as “Data Mining”, “Database”, “Medical Informatics”, “Theory”,
and “Visualization”. It spans 16 yearly time slices, capturing the
evolution of collaborations over time. The dataset’s distribution
shifts are introduced by splitting based on the fields of coauthored
publications, where “Data Mining” serves as the unseen domain
during training, creating a challenging test scenario for OOD
generalized link predictions.

Yelp [67]: It is a real-world link prediction dataset originating
from customer-business interaction records. Nodes correspond to
customers and businesses, while edges represent review interac-
tions over time. The dataset includes data from January 2019 to
December 2020. Categories such as “Pizza”, “American (New)
Food”, “Coffee & Tea”, “Sushi Bars”, and “Fast Food” are used to
label interactions. Distribution shifts are introduced by withhold-
ing interactions involving “Pizza” as a testing domain, offering a
real-world scenario to evaluate models under distribution shifts.

ACT [69]: It documents dynamic student activity within a
MOOC (Massive Open Online Course) platform. Nodes repre-
sent students, and edges denote their actions, such as course
participation or interaction with learning materials. Different cat-
egories of actions, including “Lecture Viewing”, “Assignment
Submissions” and “Forum Participation” are tracked to introduce
varying interaction patterns. The distribution shifts are created by
excluding specific categories of actions during the training phase,
challenging models to generalize across unseen patterns of student
behaviors during testing.

OGBL-PPA [7]: It is a real-world graph dataset constructed
from protein-protein association networks. Nodes represent pro-
teins from 58 different species, and edges capture biologi-
cally meaningful associations, including physical interactions, co-
expression, homology, or genomic neighborhoods. Each node is
associated with a 58-dimensional one-hot feature vector indicating
its species origin. The dataset focuses on link prediction tasks,
where the goal is to rank positive protein-protein associations
higher than randomly sampled negative edges. The evaluation
metric, Hits@100, assesses the proportion of positive edges ranked
among the top 100 positions. The dataset introduces distribution
shifts through a biological throughput-based splitting strategy:
training edges are derived from cost-effective, high-throughput
experimental methods or computational techniques, while vali-
dation and test edges consist of associations confirmed via low-
throughput, resource-intensive laboratory experiments.

OGBL-DDI [7]: It is a real-world graph dataset originat-
ing from drug-drug interaction networks. Nodes represent FDA-
approved or experimental drugs, and edges indicate interactions
where the combined effect of two drugs significantly deviates
from their independent actions. The task is to predict new drug-
drug interactions by ranking known interactions higher than ap-
proximately 100,000 randomly sampled negative interactions. The
evaluation metric, Hits@20, measures the proportion of true inter-
actions ranked among the top 20 positions, providing a challenging
benchmark for model performance. The dataset employs a protein-
target split strategy, where training and validation sets include
drugs targeting one set of proteins, while the test set consists of
drugs targeting entirely different proteins. This splitting approach
ensures that models are evaluated on their ability to generalize to
drugs with distinct biological mechanisms, reflecting real-world
OOD scenarios in drug discovery.

7.4 Other Benchmarks
In addition, there are also some works that collect these commonly
used or more than one datasets above into a standard evaluation
open-source benchmark and report the experimental results for
some well-known general OOD algorithms and graph OOD meth-
ods under the proposed evaluation protocols. Since the details of
most datasets have been discussed above, here we review these
packages briefly. Specifically, GDS [92] collects eight datasets
for graph-level tasks reflecting a diverse range of distribution
shifts across graphs to compare the performance of popular OOD
generalization algorithms and GNN backbones. GOOD [134]
summarizes more than ten datasets for both graph-level and node-
level tasks with diverse types of distribution shifts introduced by
combining different domain selection strategies and distribution
shift types. It also contains the experiments to show the significant
performance gaps between in-distribution and OOD settings and
the comparisons among different OOD methods for both general
machine learning and the graph field.

8 DISCUSSIONS

In this section, we summarize this survey and discuss several
challenges as well as opportunities worthy of future explorations.

8.1 Summary
The diversity and quality of training graph data play an important
role in OOD generalization of graph machine learning approaches.
Several graph data augmentation methods, including structure-
wise, feature-wise, and mixed-type methods are developed to
achieve good performances with simple yet effective paradigms.

Another line of works focuses on exploiting new graph mod-
els to promote the OOD generalization capability. Compared
to graph data augmentation, these models overall enjoy more
solid theoretical ground and more graph-specific designs. The
disentanglement-based graph models present good motivations
while the causality-based graph models are backed by diverse
causal inference theories. These tailored graph models also show
promising OOD generalization performances in practice.

Recently, there is a rapid development for graph learning
strategies, including graph invariant learning, graph adversarial
training, and graph self-supervised learning. Compared with the
graph models, these methods pay more attention to the learning
process, so that they are more flexible to be compatible with
different GNN backbones for enhancing OOD generalization.

To build the theoretical framework of graph generalization,
a number of theoretical derivations on generalization bounds are
proposed, which benefit the deeper understanding of graph OOD
generalization methods. And to promote deeper research, diverse
datasets under complex realistic distribution shifts covering node-
level and graph-level tasks are adopted to verify the effectiveness
of graph OOD generalization methods comprehensively and fairly.

8.2 Future Directions
There exist plenty of opportunities worthy of future explorations.

8.2.1 More Theoretical Guarantees
While some graph OOD generalization methods have demon-
strated substantial empirical progress, a critical gap remains in
connecting these methods to the theoretical foundations outlined
in Section 6. Bridging this gap still requires rigorous theoretical
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characterizations of learnable graph OOD generalization prob-
lems. Moreover, it is vital to extend the understanding of specific
types of distribution shifts, such as covariate shifts, concept shifts,
and label shifts, which often interact in complex ways in graph-
structured data. Existing works have shown initial success in
addressing specific shift types. Future research should explore
OOD generalization theories that account for diverse shift types,
backed by generalization bounds, causality, invariant learning, or
information bottleneck.

8.2.2 GNN Architecture
Recent works [132, 133, 157–159] emphasize the critical role of
architecture design in GNNs, such as readout operations, to enable
generalization to OOD graph data. These studies provide foun-
dational insights into the interaction between GNN architecture
and distribution shifts. To systematically enhance GNNs for OOD
generalization, methods for automatically tailoring a customized
GNN architecture suitable for each graph instance benefit the
predictions under distribution shifts [160], which represent a
promising direction. And more research efforts need to be paid
on automatically learning OOD generalized GNN architectures
suitable for diverse environments.

8.2.3 Environment Split
The majority of general OOD generalization algorithms rely on
access to multiple training environments [15]. However, acquiring
accurate environment labels for real-world graph data is often
prohibitively expensive, limiting the applicability of these meth-
ods. Future research could explore developing single-environment
OOD generalization methods that leverage graph structure and
feature heterogeneity to learn environment splits dynamically.
Moreover, real-world graph data often evolves over time, requiring
models to adapt to dynamic or continuous environments. Existing
works on lifelong learning and continual graph learning [161, 162]
provide a foundation for developing methods capable of efficiently
updating graph models and learning strategies to generalize across
temporal distribution shifts. Extending these methods to dynami-
cally evolving graphs under unknown distribution shifts remains a
promising and underexplored research direction.

8.2.4 Test-Time Training for Generalization
Graph test-time training can allow more flexibility in inference
time to make use of the inference unlabeled data during the
testing stage. It can improve the graph OOD generalization un-
der unknown distribution shifts via solving a test-time task. In
addition to the two works [83, 84] introduced in Section 5.3
that adopt contrastive test-time tasks, one more recent attempt
GTrans [163] proposes to adapt and refine graph data at test-
time. And LEBED [164] estimates generalization errors of well-
trained GNNs on unlabeled test graphs under distribution shifts
by leveraging a parameter-free re-training strategy and measuring
node prediction and structure reconstruction discrepancies. It is
a valuable direction to design more test-time training tasks or
explore more test-time training strategies to improve OOD gen-
eralization on graphs.

8.2.5 Broader Scope of Applications
OOD graph data widely exist in our daily life. While classical
machine learning approaches on graphs have been applied in
diverse applications, deploying OOD generalized graph methods
in real-world settings with distribution shifts remains an essential

and underexplored challenge. Applications such as recommender
systems, social networks, traffic prediction, materials science, and
risk-sensitive domains like healthcare and finance demand not
only predictive accuracy but also trustworthiness in decision-
making [165–170]. The integration of domain knowledge is sug-
gested as a potential avenue to improve graph OOD generalization.
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[71] D. Buffelli, P. Liò, and F. Vandin, “Sizeshiftreg: a regularization method for
improving size-generalization in graph neural networks,” NeurIPS, 2022.

[72] S. Zhang et al., “Stable prediction on graphs with agnostic distribution shift,” arXiv
preprint arXiv:2110.03865, 2021.

[73] M. Wu, S. Pan, X. Zhu, C. Zhou, and L. Pan, “Domain-adversarial graph neural
networks for text classification,” in ICDM, 2019.

[74] A. Sadeghi, M. Ma, B. Li, and G. B. Giannakis, “Distributionally robust semi-
supervised learning over graphs,” arXiv preprint arXiv:2110.10582, 2021.

[75] F. Feng, X. He, J. Tang, and T.-S. Chua, “Graph adversarial training: Dynamically
regularizing based on graph structure,” IEEE TKDE, 2019.

[76] H. Xue, K. Zhou, T. Chen, K. Guo, X. Hu, Y. Chang, and X. Wang, “Cap: Co-
adversarial perturbation on weights and features for improving generalization of
graph neural networks,” arXiv preprint arXiv:2110.14855, 2021.

[77] Y. Wu, A. Bojchevski, and H. Huang, “Adversarial weight perturbation improves
generalization in graph neural networks,” AAAI, 2023.

[78] C. Wang, Z. Wang, D. Chen, S. Zhou, Y. Feng, and C. Chen, “Online adversarial
distillation for graph neural networks,” arXiv preprint arXiv:2112.13966, 2021.

[79] W. Hu et al., “Strategies for pre-training graph neural networks,” ICLR, 2020.
[80] G. Yehudai, E. Fetaya, E. Meirom, G. Chechik, and H. Maron, “From local

structures to size generalization in graph neural networks,” in ICML, 2021.
[81] H. Liu, B. Hu, X. Wang, C. Shi, Z. Zhang, and J. Zhou, “Confidence may cheat:

Self-training on graph neural networks under distribution shift,” WWW, 2022.
[82] S. Li, X. Wang, A. Zhang, Y. Wu, X. He, and T.-S. Chua, “Let invariant rationale

discovery inspire graph contrastive learning,” in ICML, 2022.
[83] G. Chen, J. Zhang, X. Xiao, and Y. Li, “Graphtta: Test time adaptation on graph

neural networks,” arXiv preprint arXiv:2208.09126, 2022.
[84] Y. Wang, C. Li, W. Jin, R. Li, J. Zhao, J. Tang, and X. Xie, “Test-time training for

graph neural networks,” arXiv preprint arXiv:2210.08813, 2022.
[85] J. Zhang, Y. Wang, X. Yang, and E. Zhu, “A fully test-time training framework for

semi-supervised node classification on out-of-distribution graphs,” TKDD, 2024.
[86] J. Wang et al., “Generalizing to unseen domains: A survey on domain generaliza-

tion,” IEEE TKDE, 2022.
[87] J. Li, Z. Yu, Z. Du, L. Zhu, and H. T. Shen, “A comprehensive survey on source-

free domain adaptation,” IEEE TPAMI, 2024.
[88] X. Wu et al., “Out-of-distribution generalization in time series: A survey,” arXiv

preprint arXiv:2503.13868, 2025.
[89] W. K. Hastings, “Monte carlo sampling methods using markov chains and their

applications,” 1970.
[90] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather: Homophily

in social networks,” Annual review of sociology, 2001.
[91] A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis,

G. Taylor, and T. Goldstein, “Adversarial training for free!” NeurIPS, vol. 32, 2019.
[92] M. Ding et al., “A closer look at distribution shifts and out-of-distribution

generalization on graphs,” NeurIPS Workshop, 2021.
[93] V. Verma et al., “Manifold mixup: Better representations by interpolating hidden

states,” in ICML, 2019.
[94] L. Zhang, Z. Deng, K. Kawaguchi, A. Ghorbani, and J. Zou, “How does mixup

help with robustness and generalization?” in ICLR, 2021.
[95] H. Guo, “Nonlinear mixup: Out-of-manifold data augmentation for text classifica-

tion,” in AAAI, 2020.
[96] V. Verma et al., “Graphmix: Improved training of gnns for semi-supervised

learning,” in AAAI, 2021.
[97] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi, “Mixup for node and graph

classification,” in WWW, 2021.
[98] L. Wu, J. Xia, Z. Gao, H. Lin, C. Tan, and S. Z. Li, “Graphmixup: Improving

class-imbalanced node classification by reinforcement mixup and self-supervised
context prediction,” in ECML-PKDD, 2022.

[99] H. Guo and Y. Mao, “Intrusion-free graph mixup,” arXiv preprint
arXiv:2110.09344, 2021.

[100] Y. Wang, W. Wang, Y. Liang, Y. Cai, J. Liu, and B. Hooi, “Nodeaug: Semi-
supervised node classification with data augmentation,” in KDD, 2020.

[101] X. Han, Z. Jiang, N. Liu, and X. Hu, “G-mixup: Graph data augmentation for
graph classification,” ICML, 2022.

[102] B. Lu, Z. Zhao, X. Gan, S. Liang, L. Fu, X. Wang, and C. Zhou, “Graph out-of-
distribution generalization with controllable data augmentation,” TKDE, 2024.

[103] M. L. Montero, C. J. Ludwig, R. P. Costa, G. Malhotra, and J. Bowers, “The role
of disentanglement in generalisation,” in ICLR, 2020.

[104] A. Dittadi et al., “On the transfer of disentangled representations in realistic
settings,” arXiv preprint arXiv:2010.14407, 2020.

[105] A. Gretton, K. Fukumizu, C. Teo, L. Song, B. Schölkopf, and A. Smola, “A kernel
statistical test of independence,” NeurIPS, 2007.

[106] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon, “A survey on
contrastive self-supervised learning,” Technologies, 2020.

[107] P. H. Le-Khac, G. Healy, and A. F. Smeaton, “Contrastive representation learning:
A framework and review,” IEEE Access, 2020.

[108] B. Schölkopf et al., “Toward causal representation learning,” Proceedings of the
IEEE, 2021.

[109] K. Kuang et al., “Stable prediction across unknown environments,” in KDD, 2018.
[110] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,”

NeurIPS, 2007.
[111] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural

networks?” in ICLR, 2019.
[112] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hierarchical

graph representation learning with differentiable pooling,” NeurIPS, 2018.
[113] M. Glymour, J. Pearl, and N. P. Jewell, Causal inference in statistics: A primer.

John Wiley & Sons, 2016.
[114] A. Balke and J. Pearl, “Probabilistic evaluation of counterfactual queries,” AAAI,

1994.
[115] J. Pearl and D. Mackenzie, The book of why: the new science of cause and effect.

Basic books, 2018.
[116] C. W. Granger, “Investigating causal relations by econometric models and cross-

spectral methods,” Econometrica: journal of the Econometric Society, 1969.
[117] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, “Invariant risk minimiza-

tion,” arXiv preprint arXiv:1907.02893, 2019.
[118] S. Chang et al., “Invariant rationalization,” in ICML, 2020.
[119] K. Ahuja et al., “Invariance principle meets information bottleneck for out-of-

distribution generalization,” NeurIPS, 2021.
[120] N. Tishby and N. Zaslavsky, “Deep learning and the information bottleneck

principle,” in IEEE information theory workshop, 2015.
[121] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-

tional networks,” in ICLR, 2017.
[122] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable features with

deep adaptation networks,” in ICML, 2015.
[123] W. Zellinger et al., “Robust unsupervised domain adaptation for neural networks

via moment alignment,” Information Sciences, 2019.
[124] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph

convolutional networks,” in ICML, 2019.
[125] A. Gretton et al., “Covariate shift by kernel mean matching,” Dataset shift in

machine learning, 2009.
[126] Y. Ganin et al., “Domain-adversarial training of neural networks,” JMLR, 2016.
[127] H. Rahimian and S. Mehrotra, “Distributionally robust optimization: A review,”

arXiv preprint arXiv:1908.05659, 2019.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, AUGUST 2025 20

[128] Q. Dou, D. Coelho de Castro, K. Kamnitsas, and B. Glocker, “Domain generaliza-
tion via model-agnostic learning of semantic features,” NeurIPS, vol. 32, 2019.

[129] D. Mahajan, S. Tople, and A. Sharma, “Domain generalization using causal
matching,” in ICML, 2021.

[130] M. Zhang et al., “Correct-n-contrast: A contrastive approach for improving
robustness to spurious correlations,” arXiv preprint arXiv:2203.01517, 2022.

[131] Y. You, T. Chen, Z. Wang, and Y. Shen, “When does self-supervision help graph
convolutional networks?” in ICML, 2020.

[132] K. Xu et al., “How neural networks extrapolate: From feedforward to graph neural
networks,” ICLR, 2021.

[133] B. Knyazev, G. W. Taylor, and M. Amer, “Understanding attention and generaliza-
tion in graph neural networks,” NeurIPS, vol. 32, 2019.

[134] S. Gui, X. Li, L. Wang, and S. Ji, “GOOD: A graph out-of-distribution benchmark,”
in NeurIPS Datasets and Benchmarks Track, 2022.

[135] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural networks: A
taxonomic survey,” IEEE TPAMI, 2022.

[136] Y. Ji et al., “Drugood: Out-of-distribution (ood) dataset curator and benchmark for
ai-aided drug discovery,” arXiv preprint arXiv:2201.09637, 2022.

[137] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node embed-
ding,” Journal of Complex Networks, 2021.

[138] A. Pareja et al., “Evolvegcn: Evolving graph convolutional networks for dynamic
graphs,” in AAAI, 2020.

[139] F. Scarselli, A. C. Tsoi, and M. Hagenbuchner, “The vapnik–chervonenkis dimen-
sion of graph and recursive neural networks,” Neural Networks, 2018.

[140] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence of relative
frequencies of events to their probabilities,” in Measures of complexity, 2015.

[141] S. Verma and Z.-L. Zhang, “Stability and generalization of graph convolutional
neural networks,” in KDD, 2019.

[142] O. Bousquet and A. Elisseeff, “Stability and generalization,” JMLR, 2002.
[143] V. Garg, S. Jegelka, and T. Jaakkola, “Generalization and representational limits of

graph neural networks,” in ICML, 2020.
[144] S. Lv, “Generalization bounds for graph convolutional neural networks via

rademacher complexity,” arXiv preprint arXiv:2102.10234, 2021.
[145] R. Liao, R. Urtasun, and R. Zemel, “A pac-bayesian approach to generalization

bounds for graph neural networks,” ICLR, 2021.
[146] J. Ma, J. Deng, and Q. Mei, “Subgroup generalization and fairness of graph neural

networks,” NeurIPS, vol. 34, 2021.
[147] S. S. Du et al., “Graph neural tangent kernel: Fusing graph neural networks with

graph kernels,” NeurIPS, 2019.
[148] S. Zhang, M. Wang, S. Liu, P.-Y. Chen, and J. Xiong, “Fast learning of graph neural

networks with guaranteed generalizability: one-hidden-layer case,” in ICML, 2020.
[149] A. Baranwal et al., “Graph convolution for semi-supervised classification: Im-

proved linear separability and out-of-distribution generalization,” ICML, 2021.
[150] S. Maskey, R. Levie, Y. Lee, and G. Kutyniok, “Generalization analysis of message

passing neural networks on large random graphs,” in NeurIPS, 2022.
[151] W. Mao et al., “Invariant graph learning meets information bottleneck for out-of-

distribution generalization,” FCS, 2025.
[152] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer:

Generating explanations for graph neural networks,” NeurIPS, 2019.
[153] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, 1998.
[154] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic
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